Well-posed nonlocal elasticity model for finite domains and its application to the mechanical behavior of nanorods

2020 ◽  
Vol 231 (10) ◽  
pp. 4019-4033 ◽  
Author(s):  
Mohammad A. Maneshi ◽  
Esmaeal Ghavanloo ◽  
S. Ahmad Fazelzadeh
Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 717 ◽  
Author(s):  
Raffaele Barretta ◽  
Marko Čanađija ◽  
Francesco Marotti de Sciarra

The research at hand deals with the mechanical behavior of beam-like nanostructures. Nanobeams are assembled of multiple layers of different materials and geometry giving a layered nanobeam. To properly address experimentally noticed size effects in structures of this type, an adequate nonlocal elasticity formulation must be applied. The present model relies on the stress-driven integral methodology that effectively circumvents known deficiencies of other approaches. As a main contribution, a set of differential equations and boundary conditions governing the underlaying mechanics is proposed and applied to two benchmark examples. The obtained results show the expected stiffening nonlocal behavior exhibiting most of smaller and smaller structures and modern devices.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Sign in / Sign up

Export Citation Format

Share Document