scholarly journals Characterization of the Distribution of Spin–Lattice Relaxation Rates of Lipid Spin Labels in Fiber Cell Plasma Membranes of Eye Lenses with a Stretched Exponential Function

2019 ◽  
Vol 50 (7) ◽  
pp. 903-918 ◽  
Author(s):  
Natalia Stein ◽  
Laxman Mainali ◽  
James S. Hyde ◽  
Witold K. Subczynski
2020 ◽  
Author(s):  
N. Stein ◽  
W. K. Subczynski

AbstractA probability distribution of rate constants contained within an exponential-like saturation recovery (SR) electron paramagnetic resonance signal can be constructed using stretched exponential function fitting parameters. Previously (Stein et al. Appl. Magn. Reson. 2019.), application of this method was limited to the case where only one relaxation process, namely spin-lattice relaxations due to the rotational diffusion of the spin labels in the intact eye-lens membranes, contributed to an exponential-like SR signal. These conditions were achieved for thoroughly deoxygenated samples. Here, the case is described where the second relaxation process, namely Heisenberg exchange between the spin label and molecular oxygen that occurs during bimolecular collisions, contributes to the decay of SR signals. We have further developed the theory for application of stretched exponential function to analyze SR signals involving these two processes. This new approach allows separation of stretched exponential parameters, namely characteristic stretched rates and heterogeneity parameters for both processes. Knowing these parameters allowed us to separately construct the probability distributions of spin-lattice relaxation rates determined by the rotational diffusion of spin labels and the distribution of relaxations induced strictly by collisions with molecular oxygen. The later distribution is determined by the distribution of oxygen diffusion concentration products within the membrane, which forms a sensitive new way to describe membrane fluidity and heterogeneity. This method was validated in silico and by fitting SR signals from spin-labeled intact nuclear fiber cell plasma membranes extracted from porcine eye lenses equilibrated with different fractions of air.Statement of SignificanceMulti-exponential spin-lattice relaxation in complex membranous systems can be described by a stretched exponential function that provides a continuous probability distribution of relaxation rates rather than discreet relaxations from separate domains. The stretched exponential function has two fitting parameters, the characteristic spin-lattice relaxation rate (T1str−1) and the stretching parameter (β), obtained without any assumption about the number of membrane domains and their homogeneity. For membranes equilibrated with air, collisions with molecular oxygen provide an additional relaxation pathway for spin labels that depends on the oxygen-diffusion-concentration product in the vicinity of spin labels. This new approach allows separation of membrane fluidity and heterogeneity sensed by motion of lipid spin labels from those described by the translational diffusion of molecular oxygen.


1975 ◽  
Vol 30 (5) ◽  
pp. 571-582 ◽  
Author(s):  
C. J. Winscom

Abstract The behaviour of spin sublevel populations with time following periodic photo-excitation is ex-amined. The treatment is limited to conditions of magnetic field strength and temperature for which the spin lattice relaxation rates dominate the individual spin sublevel decay rates. The response of the system to three modes of excitation is considered: (i) continuous excitation using a time-independent intensity (ii) periodic rectangular pulse excitation and (iii) periodic waveform excitation. A convenient correspondence between the various forms of solutions is pointed out. The requirements of an experiment to determine spin-lattice relaxation rates in organic triplets at 77 K are discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander V. Skripov ◽  
Olga A. Babanova ◽  
Roman V. Skoryunov ◽  
Alexei V. Soloninin ◽  
Terrence J. Udovic

Abstract Polyhydroborate-based salts of lithium and sodium have attracted much recent interest as promising solid-state electrolytes for energy-related applications. A member of this family, sodium dicarba-nido-undecahydroborate Na-7,9-C2B9H12 exhibits superionic conductivity above its order-disorder phase transition temperature, ∼360 K. To investigate the dynamics of the anions and cations in this compound at the microscopic level, we have measured the 1H and 23Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates over the temperature range of 148–384 K. It has been found that the transition from the low-T ordered to the high-T disordered phase is accompanied by an abrupt, several-orders-of-magnitude acceleration of both the reorientational jump rate of the complex anions and the diffusive jump rate of Na+ cations. These results support the idea that reorientations of large [C2B9H12]− anions can facilitate cation diffusion and, thus, the ionic conductivity. The apparent activation energies for anion reorientations obtained from the 1H spin-lattice relaxation data are 314 meV for the ordered phase and 272 meV for the disordered phase. The activation energies for Na+ diffusive jumps derived from the 23Na spin-lattice relaxation data are 350 and 268 meV for the ordered and disordered phases, respectively.


2006 ◽  
Vol 914 ◽  
Author(s):  
Masazumi Matsuura ◽  
Kinya Goto ◽  
Noriko Miura ◽  
Shinobu Hashii ◽  
Koyu Asai

AbstractThis paper describes film characterization of Ultra Low-k (ULK) dielectrics modified by UV curing with different wavelength bands. We have demonstrated UV hardening of ULK-SiOC (k=2.65) with two types of UV bulbs (UV-X and UV-Y) and the UV modifications of ULK-SiOC film properties are characterized by using FT-IR spectroscopy, 29Si Solid-state NMR spectroscopy and Raman spectroscopy. FT-IR and NMR analyses reveal that UV-Y curing is preferable for UV curing modification of ULK-SiOC. UV-Y curing increases Q mode peak in NMR, resulting in the enhanced Si-O crosslinking, while UV-X curing increases TH mode and TOR mode peaks. Spin lattice relaxation time T1 for 29Si is decreased with UV curing. This result indicates that UV curing enhances molecular motion in Si-O network. Raman analysis shows that UV curing increases amorphous carbon groups, which corresponds to the enhanced molecular motion in Si-O network.


1980 ◽  
Vol 58 (19) ◽  
pp. 2016-2023 ◽  
Author(s):  
Lawrence D. Colebrook ◽  
Laurance D. Hall

A general discussion is given of the determination of the proton spin–lattice relaxation rates of natural products, with particular emphasis on use of the null-point method which, for the systems studied here, gives identical results with those obtained via the conventional (and relatively time consuming) computational method.


Sign in / Sign up

Export Citation Format

Share Document