Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction

2016 ◽  
Vol 21 (4) ◽  
pp. 537-548 ◽  
Author(s):  
Yuki Naito ◽  
Yutaka Yoshikawa ◽  
Kazufumi Masuda ◽  
Hiroyuki Yasui
2002 ◽  
Vol 93 (2) ◽  
pp. 773-781 ◽  
Author(s):  
Juleen R. Zierath

This review will provide insight on the current understanding of the intracellular signaling mechanisms by which exercise training increases glucose metabolism and gene expression in skeletal muscle. Participation in regular exercise programs can have important clinical implications, leading to improved health in insulin-resistant persons. Evidence is emerging that insulin signal transduction at the level of insulin receptor substrates 1 and 2, as well as phosphatidylinositol 3-kinase, is enhanced in skeletal muscle after exercise training. This is clinically relevant because insulin signaling is impaired in skeletal muscle from insulin-resistant Type 2 diabetic and obese humans. The molecular mechanism for enhanced insulin-stimulated glucose uptake after exercise training may be partly related to increased expression and activity of key proteins known to regulate glucose metabolism in skeletal muscle. Exercise also leads to an insulin-independent increase in glucose transport, mediated in part by AMP-activated protein kinase. Changes in protein expression may be related to increased signal transduction through the mitogen-activated protein kinase signaling cascades, a pathway known to regulate transcriptional activity. Understanding the molecular mechanism for the activation of insulin signal transduction pathways after exercise training may provide novel entry points for new strategies to enhance glucose metabolism and for improved health in the general population.


2013 ◽  
pp. 1-1
Author(s):  
Marina Minic ◽  
Nuno Rocha ◽  
Ben Challis ◽  
Matthijs Groeneveld ◽  
Stephen O Rahilly ◽  
...  

2001 ◽  
Vol 193 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Yoshinori Kawazoe ◽  
Tetsuji Naka ◽  
Minoru Fujimoto ◽  
Hidetsugu Kohzaki ◽  
Yoshiaki Morita ◽  
...  

Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin receptor substrate 1 (IRS-1), SSI-1 deficiency resulted in sustained phosphorylation of IRS-1 in response to insulin. Furthermore, SSI-1 achieves this inhibition both by binding directly to IRS-1 and by suppressing Janus kinases. These findings suggest that SSI-1 acts as a negative feedback factor also in the insulin signal transduction pathway through the suppression of IRS-1 phosphorylation.


1997 ◽  
Vol 130 (1-2) ◽  
pp. 33-42 ◽  
Author(s):  
Ana C.P Thirone ◽  
Carla R.O Carvalho ◽  
Sigisfredo L Brenelli ◽  
Lı́cio A Velloso ◽  
Mario J.A. Saad

1997 ◽  
Vol 272 (36) ◽  
pp. 22884-22890 ◽  
Author(s):  
Paulos Berhanu ◽  
Celia Anderson ◽  
Matt Hickman ◽  
Theodore P. Ciaraldi

2001 ◽  
Vol 280 (2) ◽  
pp. G229-G240 ◽  
Author(s):  
Soheila Marandi ◽  
Nadine De Keyser ◽  
Alain Saliez ◽  
Anne-Sophie Maernoudt ◽  
Etienne Marc Sokal ◽  
...  

The postreceptor events regulating the signal of insulin downstream in rat intestinal cells have not yet been analyzed. Our objectives were to identify the nature of receptor substrates and phosphorylated proteins involved in the signaling of insulin and to investigate the mechanism(s) by which insulin enhances intestinal hydrolases. In response to insulin, the following proteins were rapidly phosphorylated on tyrosine residues: 1) insulin receptor substrates-1 (IRS-1), -2, and -4; 2) phospholipase C-isoenzyme-γ; 3) the Ras-GTPase-activating protein (GAP) associated with Rho GAP and p62Src; 4) the insulin receptor β-subunit; 5) the p85 subunits of phosphatidylinositol 3-kinase (PI 3-kinase); 6) the Src homology 2 α-collagen protein; 7) protein kinase B; 8) mitogen-activated protein (MAP) kinase-1 and -2; and 9) growth receptor-bound protein-2. Compared with controls, insulin enhanced the intestinal activity of MAP kinase-2 and protein kinase B by two- and fivefold, respectively, but did not enhance p70/S6 ribosomal kinase. Administration of an antireceptor antibody or MAP-kinase inhibitor PD-98059 but not a PI 3-kinase inhibitor (wortmannin) to sucklings inhibited the effects of insulin on mucosal mass and enzyme expression. We conclude that normal rat enterocytes express all of the receptor substrates and mediators involved in different insulin signaling pathways and that receptor binding initiates a signal enhancing brush-border membrane hydrolase, which appears to be regulated by the cascade of MAP kinases but not by PI 3-kinase.


Sign in / Sign up

Export Citation Format

Share Document