scholarly journals Cellular effects of glycine and trehalose air-polishing powders on human gingival fibroblasts in vitro

Author(s):  
Jens Weusmann ◽  
James Deschner ◽  
Jean-Claude Imber ◽  
Anna Damanaki ◽  
Natalia D. P. Leguizamón ◽  
...  

Abstract Objectives Air-polishing has been used in the treatment of periodontitis and gingivitis for years. The introduction of low-abrasive powders has enabled the use of air-polishing devices for subgingival therapy. Within the last decade, a wide range of different low-abrasive powders for subgingival use has been established. In this study, the effects of a glycine powder and a trehalose powder on human gingival fibroblasts (HGF) were investigated. Methods HGF were derived from three systemically and periodontally healthy donors. After 24 h and 48 h of incubation time, mRNA levels, and after 48 h, protein levels of TNFα, IL-8, CCL2, and VEGF were determined. In addition, NF-κB p65 nuclear translocation and in vitro wound healing were assessed. Statistical analysis was performed by ANOVA and post hoc Dunnett’s and Tukey’s tests (p < 0.05). Results Glycine powder significantly increased the expression of proinflammatory genes and showed exploitation of the NF-κB pathway, albeit trehalose powder hardly interfered with cell function and did not trigger the NF-κB pathway. In contrast to trehalose, glycine showed a significant inhibitory effect on the in vitro wound healing rate. Conclusion Subgingivally applicable powders for air-polishing devices can regulate cell viability and proliferation as well as cytokine expression. Our in vitro study suggests that the above powders may influence HGF via direct cell effects. Trehalose appears to be relatively inert compared to glycine powder.

2021 ◽  
Vol 125 (1) ◽  
pp. 155-164 ◽  
Author(s):  
Maryam Gheisarifar ◽  
Geoffrey A. Thompson ◽  
Carl Drago ◽  
Fahimeh Tabatabaei ◽  
Morteza Rasoulianboroujeni

2015 ◽  
Vol 34 (11) ◽  
pp. 1073-1082 ◽  
Author(s):  
SS Soydan ◽  
K Araz ◽  
FV Senel ◽  
E Yurtcu ◽  
F Helvacioglu ◽  
...  

Data arising from the recent literature directed the researchers to study on the degree and extent of bisphosphonate toxicity on oral mucosa in further detail. The aim of this study is to determine the half maximal inhibitory concentration of pamidronate (PAM) and alendronate (ALN) on human gingival fibroblasts in vitro using 3-[4.5-thiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) assay and to evaluate the effects of both agents on the proliferation and apoptotic indices. Cells used in the study were generated from human gingival specimens and divided into alendronate ( n = 240), PAM ( n = 240), and control groups ( n = 60). Based on the MTT assay results, 10−4, 10−5, 10−6, and 10−7 M concentrations of both drugs were administered and the effects were evaluated for 6, 12, 24, 48, or 72 h periods. An indirect immunofluorescence technique was used to evaluate apoptotic (anti-caspase 3) and proliferation (anti-Ki67) indices. Toxicity of both PAM and ALN was found to be the most potent at 10−4–10−5 M range. The apoptotic index of PAM group was found to be significantly higher than ALN group for all concentrations especially at 24 h incubation time ( p < 0.05). The decrease in the proliferation index was found similar in first 48 h for both drugs; however, after 72 h of incubation decrease in proliferation index in PAM group was found to be significantly higher ( p < 0.05). Micromolar concentrations of not only PAM but also ALN rapidly affect cells generated from human oral gingival tissue by inducing apoptosis together with inhibition of proliferation. Cytotoxic effects of both ALN and PAM on primary human gingival fibroblasts, which cause significant changes in apoptotic and proliferative indices as shown in this in vitro study, suggests that the defective epithelialization of oral mucosa is possibly a major factor on the onset of bisphosphonate-related osteonecrosis of the jaw cases.


2015 ◽  
Vol 26 (6) ◽  
pp. 602-606 ◽  
Author(s):  
Rafaela S. R. e Lima ◽  
Daiane C. Peruzzo ◽  
Marcelo H. Napimoga ◽  
Eduardo Saba-Chujfi ◽  
Silvio Antonio dos Santos-Pereira ◽  
...  

Mucograft(r) is a resorbing porcine matrix composed of type I and type III collagen, used for soft tissue augmentation in guided tissue bony regeneration procedures. This in vitro study aimed to evaluate the biological behavior of Mucograft(r) in human gingival fibroblasts, as well as the ability of the matrix to induce production of extracellular matrix. Six resorbing Mucograft(r) matrices (MCG) were cut into 3 x 2 mm rectangles and 5 x 5 mm squares and were placed in 96- and 24-well plates, respectively. The control group (CTRL) consisted of cells plated on polystyrene without the MCG. After one, two, three and seven days, cell proliferation and viability were assessed using the Trypan exclusion method and MTT test, respectively. Type III collagen (COL 3A1) and vimentin (VIM) expression were also evaluated at 10 and 14 days, using Western blotting. Statistical analysis, using ANOVA with post hoc Bonferroni test, revealed that human gingival fibroblasts from MCG showed similar results (p>0.05) for proliferation and viability as the cells cultured on CTRL. After 14 days, a significant decrease in COL 3A1 expression (p<0.05) was observed when cultured with the MCG. VIM expression showed no significant difference at any time period (p>0.05). Although no increase in extracellular matrix secretion was observed in this in vitro study, Mucograft(r) presented cellular compatibility, being an option for a scaffold whenever it is required.


Sign in / Sign up

Export Citation Format

Share Document