Electrochemical performance of multi-walled carbon nanotube composite electrodes is enhanced with larger diameters and reduced specific surface area

2016 ◽  
Vol 20 (3) ◽  
pp. 785-792 ◽  
Author(s):  
Aidan Fagan-Murphy ◽  
Shikha Kataria ◽  
Bhavik Anil Patel
2013 ◽  
Vol 19 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Soodabeh Khalili ◽  
Asghar Ghoreyshi ◽  
Mohsen Jahanshahi

this study, the equilibrium adsorption of CO2 on activated charcoal (AC) and multi-walled carbon nanotube (MWCNT) were investigated. Experiments were performed at temperature range of 298-318 K and pressures up to 40 bars. The obtained results indicated that the equilibrium uptakes of CO2 by both adsorbents increased with increasing pressure and decreasing temperature. In spite of lower specific surface area, the maximum amount of CO2 uptake achieved by MWCNT at 298K and 40 bars were twice of CO2 capture by AC (15 mmol.g-1 compared to 7.93 mmol.g-1). The higher CO2 captured by MWCNT can be attributed to its higher pore volume and specific structure of MWCN T such as hollowness and light mass which had greater influence than specific surface area. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. Following a simple acidic treatment procedure increased marginally CO2 capture by MWCNT over entire range of pressure, while for AC this effect appeared at higher pressures. Small values of isosteric heat of adsorption were evaluated based on Clausius-Clapeyron equation showed the physical nature of adsorption mechanism. The high amount of CO2 capture by MWCNT renders it as a promising carrier for practical applications such as gas separation.


2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


2018 ◽  
Vol 6 (37) ◽  
pp. 18286-18292 ◽  
Author(s):  
Yaping Wang ◽  
Yifang Zhang ◽  
Junrong Shi ◽  
Anqiang Pan ◽  
Feng Jiang ◽  
...  

S-doped porous carbon confined SnS hollow nanospheres have a unique structure and large specific surface area and exhibit improved electrochemical performance.


Author(s):  
Wanli Jia ◽  
Jun Li ◽  
Zhongjie Lu ◽  
Yongfei Juan ◽  
Yunqiang Jiang

Honeycomb-like CO3O4 nanosheets with high specific surface area were successfully synthesized on porous nickel foam by the facile hydrothermal method followed by an annealing treatment (300 °C), which were used as high-performance supercapacitor electrodes. The effects of mole ratio of hexamethylenetetramine (HMT) and Co(NO3)2 (1:1, 2:1, 3:1, 4:1, 5:1 and 6:1)as the reactants on morphological evolution and electrochemical performance of the electrodes were investigated in detail. X-ray diffractometry, transmission electron microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were applied to characterize the structure and morphology of the products. The electrochemical performance was measured by cyclic voltammetry (CV) and galvanostatic charge/discharge. The results indicated that phase constituents were almost unaffected with the change in mole ratio of HMT and Co(NO3)2. However, the significant morphological evolution of Co3O4 was observed with increasing the mole ratio, which was described as followed: the nanosheets accompanied with a large number of spherical nanoparticles→the formation of some strip-like particles due to the agglomeration of spherical nanoparticles→the formation of new nanosheets resulting from the growth of strip-like particles→the formation of coarse flower-like particles owing to the connection among the nanosheets→the nanosheets gradually covered with flower-like particles. Accompanied with the change, the specific surface area was increased firstly, and then decreased. A maximum was obtained in the HMT and Co(NO3)2 mole ratio of 4:1, which was further validated by CV and galvanostatic charge/discharge tests. The specific capacitance value was 743.00 F·g-1 at 1 A·g-1 in the galvanostatic charge/discharge test, which was apparently higher than those in the other mole ratios (139.11 F·g-1 in 1:1, 280.46 F·g-1 in 2:1, 503.29 F·g-1 in 3:1, 463.75 F·g-1 in 5:1 and 363.74 F·g-1 in 6:1). The change was also observed in the CV test with a scanning rate of 5 mV·s-1 (121.32 F·g-1 in 1:1, 217.33 F·g-1 in 2:1, 559.86 F·g-1 in 3:1, 693.56 F·g-1 in 4:1, 423.35 F·g-1 in 5:1 and 321.64 F·g-1 in 6:1). Co3O4 synthesized in the mole ratio of 4:1 also demonstrated an excellent cyclic performance, in which about 97% of the initial specific capacitance was remained at 1 A·g-1 for 500 cycles in the galvanostatic charge/discharge test. This excellent electrochemical performance was ascribed to high specific surface area of Co3O4 nanosheets that provide enough channels and space for ions transportion.


Carbon ◽  
2010 ◽  
Vol 48 (15) ◽  
pp. 4542-4546 ◽  
Author(s):  
Don N. Futaba ◽  
Jundai Goto ◽  
Takeo Yamada ◽  
Satoshi Yasuda ◽  
Motoo Yumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document