scholarly journals Electrochemical Performance of Activated Carbons with Different Specific Surface Area as Supercapacitor Electrode Materials

Author(s):  
Wei Wang ◽  
Author(s):  
Wenbo Geng ◽  
Qing Wang ◽  
Jianfeng Dai ◽  
Haoran Gao

The performance of supercapacitor electrode materials was greatly affected by the specific surface area. The urchin-like NiCo2O4 was transformed into porous NiCo2O4 (AA-NiCo2O[Formula: see text] using the acid–alkali treatment method. The specific surface area of AA-NiCo2O4 was 165.0660 m2/g, which was about three times larger than that of NiCo2O4. The specific capacitance of the AA-NiCo2O4 was enhanced significantly (1700 F/g at 1 A/g), and AA-NiCo2O4 possesses good rate capacitance (1277 F/g at 10 A/g). This is mainly attributed to the larger specific surface area, fast and convenient electron–ion transport and redox reaction. Therefore, AA-NiCo2O4 is a promising high-performance supercapacitor electrode material.


RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 6856-6864 ◽  
Author(s):  
Kien-Cuong Pham ◽  
David S. McPhail ◽  
Andrew T. S. Wee ◽  
Daniel H. C. Chua

Deposition of amorphous molybdenum sulfide on a high specific surface area carbon support strongly enhanced the specific capacitance of the material.


2011 ◽  
Vol 239-242 ◽  
pp. 1010-1013 ◽  
Author(s):  
Yan Hong Sun ◽  
Jia Chang Zhao ◽  
Hong Hua Zhou ◽  
Bo He Jin Tang ◽  
Yu Qing Gu ◽  
...  

Composite electrode materials for supercapacitor were prepared by a combination of incipient wetness impregnation and hydrothermal method in this study. The materials were characterized by XRD, specific surface area and electrochemical testing. The effect of support on the electrochemical performance of the composite electrode materials was investigated. The result shows that the samples prepared by different supports contain nickel nitrate hydroxide hydrate (the electroactive material in the composite) and undecomposed nickel nitrate.The specific surface area decrease after the loading of nickel compounds, which indicates the exisitance of nickel compounds in the pores. The composite prepared by using diatomite support exhibits higher specific capacitance than those prepared by using SBA-15 and Ti-Si molecular sieve, which delivers the specific capacitance of 1162.77 F/g at the scan rate of 5 mV/s.


2016 ◽  
Vol 09 (01) ◽  
pp. 1640001 ◽  
Author(s):  
Kunfeng Chen ◽  
Gong Li ◽  
Dongfeng Xue

The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.


2018 ◽  
Vol 2 (4) ◽  
pp. 772-785 ◽  
Author(s):  
Dina Ibrahim Abouelamaiem ◽  
Guanjie He ◽  
Ivan Parkin ◽  
Tobias P. Neville ◽  
Ana Belen Jorge ◽  
...  

Different characterization techniques were used to analyse the chemically activated carbons in (i) one dimensional analysis including MIP and BET, (ii) two dimensions including SEM and TEM and (iii) three dimensional X-ray CT. This structure has been directly linked to the electrochemical performance of supercapacitors for the first time.


2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


Sign in / Sign up

Export Citation Format

Share Document