Satellite earth observation as a tool to conceptualize hydrogeological fluxes in the Sandveld, South Africa

2013 ◽  
Vol 21 (5) ◽  
pp. 1053-1070 ◽  
Author(s):  
Zahn Műnch ◽  
Julian E. Conrad ◽  
Lesley A. Gibson ◽  
Anthony R. Palmer ◽  
Denis Hughes
2021 ◽  
Author(s):  
Insa Otte ◽  
Nosiseko Mashiyi ◽  
Pawel Kluter ◽  
Steven Hill ◽  
Andreas Hirner ◽  
...  

<p>Global biodiversity and ecosystem services are under high pressure of human impact. Although avoiding, reducing and reversing the impacts of human activities on ecosystems should be an urgent priority, the loss of biodiversity continues. One of the main drivers of biodiversity loss is land use change and land degradation. In South Africa land degradation has a long history and is of great concern. The SPACES II project SALDi (South African Land Degradation Monitor) aims for developing new, adaptive and sustainable tools for assessing land degradation by addressing the dynamics and functioning of multi-use landscapes with respect to land use change and ecosystem services. SPACES II is a German-South African “Science Partnerships for the Adaptation to Complex Earth System Processes”. Within SALDi ready-to-use earth observation (EO) data cubes are developed. EO data cubes are useful and effective tools using earth observations to deliver decision-ready products. By accessing, storing and processing of remote sensing products and time-series in data cubes, the efficient monitoring of land degradation can therefore be enabled. The SALDi data cubes from optical and radar satellite data include all necessary pre-processing steps and are generated to monitor vegetation dynamics of five years for six focus areas. Intra- and interannual variability in both, a high spatial and temporal resolution will be accounted to monitor land degradation. Therefore, spatial high resolution earth observation data from 2016 to 2021 from Sentinel-1 (C-Band radar) and Sentinel-2 (multispectral) will be integrated in the SALDi data cube for six research areas of 100 x 100 km. Additionally, a number of vegetation indices will be implemented to account for explicit land degradation and vegetation monitoring. Spatially explicit query tools will enable users of the system to focus on specific areas, like hydrological catchments or blocks of fields.</p>


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Michael T. Gebreslasie ◽  
Ides Bauwens

The aim of this study is to assess the capacity gaps and requirements of Earth observation (EO) and related technologies for malaria vector control and management in the Lubombo Spatial Development Initiative regions of South Africa, Swaziland and Mozambique. In order to achieve the core objective of this study, available EO data (including main characteristics and resources required to utilize them) and their potential applications for malaria epidemiology are reviewed. In addition, a survey was conducted to assess the availability of human and facility resources to operate EO and related technologies for control and management of the malaria control programs in these countries resulting in an analysis of capacity gaps, priorities and requirements. Earth observation in malaria vector control and management has two different applications: i) collection of relevant remotely sensed data for epidemiological use; and ii) direct support of ongoing malaria vector control activities. All malaria control programs and institutions recognize the significance of EO products to detect mosquito vector habitats, to monitor environmental parameters affecting mosquito vector populations as well as house mapping and distribution of information supporting residual spray planning and monitoring. It was found that only the malaria research unit (MRU) of the medical research council (MRC) in South Africa and the national malaria control program (MCP) in Swaziland currently have a fully functional geographic information systems (GIS), whereas the other surveyed MCPs in South Africa and Mozambique currently do not have this in place. Earth observation skills only exist in MRU of MRC, while spatial epidemiology is scarce in all institutions, which was identified as major gap. The survey has also confirmed that EO and GIS technologies have enormous potential as sources of spatial data and as analytical frameworks for malaria vector control. It is therefore evident that planning and management require capacity building with respect to GIS, EO and spatial epidemiology.


Author(s):  
Maria Ferentinou ◽  
Wojciech Witkowski ◽  
Ryszard Hejmanowski ◽  
Hennie Grobler ◽  
Agnieszka Malinowska

Abstract. Sinkholes are alarming and dangerous events, they have a worldwide occurrence, and are imposing a potential risk to urban communities and the widely developed built environment. Losses due to catastrophic sinkhole collapse, foundation, pavement and structural repairs, occur more often, due to the increased pressure to develop even on sinkhole prone land, and the aging of existing water supply infrastructure in the majority of cities. Remote sensing earth observation methods have proved to be valuable tools during the last two decades in long-term sinkhole hazard assessment. Satellite air borne and ground earth observation methods have primarily facilitated the wide detection of continuous displacement on the earth's crust. National sinkholes catalogues are necessary for town planers decision makers, and government authorities. In many instances the ground collapse is the result of water ingress from old poorly maintained leaking pipelines, or extensive dewatering activities. In the current study a comprehensive review of the current literature is presented in order to show experiences from South Africa and present recent mapping using PSInSAR methodology in Centurion South Africa.


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


Author(s):  
Alex Johnson ◽  
Amanda Hitchins

Abstract This article summarizes a series of trips sponsored by People to People, a professional exchange program. The trips described in this report were led by the first author of this article and include trips to South Africa, Russia, Vietnam and Cambodia, and Israel. Each of these trips included delegations of 25 to 50 speech-language pathologists and audiologists who participated in professional visits to learn of the health, education, and social conditions in each country. Additionally, opportunities to meet with communication disorders professionals, students, and persons with speech, language, or hearing disabilities were included. People to People, partnered with the American Speech-Language-Hearing Association (ASHA), provides a meaningful and interesting way to learn and travel with colleagues.


Sign in / Sign up

Export Citation Format

Share Document