Evapotranspiration capture and stream depletion due to groundwater pumping under variable boreal climate conditions: Sudogda River Basin, Russia

2018 ◽  
Vol 26 (8) ◽  
pp. 2753-2767 ◽  
Author(s):  
Sergey Grinevskiy ◽  
Elena Filimonova ◽  
Victor Sporyshev ◽  
Vsevolod Samartsev ◽  
Sergey Pozdniakov
2021 ◽  
Author(s):  
Adria Rubio-Martin ◽  
Hector Macian-Sorribes ◽  
Esther Lopez-Perez ◽  
Alberto Garcia-Prats ◽  
Juan Manzano-Juarez ◽  
...  

<p>The Requena-Utiel aquifer in the Jucar River Basin (Mediterranean Spain) is mined mainly for the irrigation of vineyards (Denominación de Origen Utiel-Requena), and some olive and nut trees. It has been recently declared as in bad quantitative status by the Jucar River Basin Agency (Confederación Hidrográfica del Júcar, CHJ). Among the measures taken to control water abstraction, a pumping cap for the irrigation season (May-September) has been agreed between the CHJ and the groundwater user association. This limit depends on the cumulative precipitation from December to April (classifying the year in wet, normal or dry), although that irrigation amount is in any case below the crop requirements. Consequently, predicting the type of year beforehand is a piece of valuable information for the water users in order to optimally schedule groundwater pumping and foresee crop production.</p><p>This study analyses the ability of seasonal meteorological forecasts from the Copernicus Climate Change Service (C3S) to anticipate the type of year in the agricultural areas of the Requena Utiel aquifer considering different periods ahead. The following seasonal forecasting services were used: ECMWF SEAS5, UKMO GloSEA5, MétéoFrance System, DWD GCFS, and CMCC SPS. Seasonal forecasts issued between November 1<sup>st</sup> and April 1<sup>st</sup> were downloaded and post-processed using a month-dependent linear scaling against historical records. Once post-processed, the skill of seasonal forecasts to predict the type of year has been evaluated for the 1995-2015 period, depending on the anticipation time.</p><p>Results show that, on a broader view, the type of year cannot be safely anticipated before April 1<sup>st</sup>. However, we have identified that, for particular types of year and forecasting services, the anticipation time can be enlarged (e.g predicting wet years in December). Furthermore, we have found a direct relationship between the strength of the signal (number of ensemble members that predict the same type of year) and the forecasting skill, meaning that seasonal forecasts showing a strong signal, if properly identified, could offer valuable information months in advance to the beginning of the irrigation season.</p><p><em>Acknowledgements:</em></p><p>This study has received funding from the eGROUNDWATER project (GA n. 1921), part of the PRIMA programme supported by the European Union’s Horizon 2020 research and innovation programme. It has been also supported by the ADAPTAMED project (RTI2018-101483-B-I00), funded by the Ministerio de Economia y Competitividad (MINECO) of Spain and with EU FEDER funds.</p>


Author(s):  
Philippe Lucas‐Picher ◽  
Simon Lachance‐Cloutier ◽  
Richard Arsenault ◽  
Annie Poulin ◽  
Simon Ricard ◽  
...  

2017 ◽  
Vol 8 (4) ◽  
pp. 652-674 ◽  
Author(s):  
Mohsen Nasseri ◽  
Banafsheh Zahraie ◽  
Leila Forouhar

Abstract In this paper, two approaches to assess the impacts of climate change on streamflows have been used. In the first approach (direct), a statistical downscaling technique was utilized to predict future streamflows based on large-scale data of general circulation models (GCMs). In the second approach (indirect), GCM outputs were downscaled to produce local climate conditions which were then used as inputs to a hydrological simulation model. In this article, some data-mining methods such as model-tree, multivariate adaptive regression splines and group method of data handling were utilized for direct downscaling of streamflows. Projections of HadCM3 model for A2 and B2 SRES scenarios were also used to simulate future climate conditions. These evaluations were done over three sub-basins of Karkheh River basin in southwest Iran. To achieve a comprehensive assessment, a global uncertainty assessment method was used to evaluate the results of the models. The results indicated that despite simplifications included in the direct downscaling, this approach is accurate enough to be used for assessing climate change impacts on streamflows without computational efforts of hydrological modeling. Furthermore, comparing future climate projections, the uncertainty associated with elimination of hydrological modeling is estimated to be high.


2020 ◽  
Author(s):  
Yao Jiang ◽  
Zongxue Xu

<p>Understanding the dynamics of basin-scale water budgets over the Tibetan Plateau (TP) is significant for hydrology and water resource management in the southern and eastern Asia. However, a detailed water balance analysis is limited by the lack of adequate hydro-climatic observations in this region. In this study, we investigate the spatiotemporal variation of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q etc.) in the Yarlung Tsangpo River basin (YTB) of southeast TP during the period of 1975-2015 through using multi-source datasets (e.g. insitu observation, remote sensing data products, reanalysis outputs and model simulations etc.). The change trend of water budget components and vegetation parameters was analyzed in the YTB on interannual scale. The results indicated that the detailed water budgets are different from upstream to downstream YTB due to different temperature, vegetation cover and evapotranspiration, which are mainly affected by different climate conditions. In the whole basin, precipitation that are mainly during June to October was the major contributor to the runoff. The P and Q were found to show a slight but insignificant decrease in most regions of YTB since the late 1990s, which showed positive relationships with the weakening Indian summer monsoon. While the ET showed an insignificant increase across most of the YTB, especially in the middle basin. The runoff coefficient (Q/P) exhibited an indistinctively decreasing trend which may be, to some extent, due to the overlap effects of ET increase and snow and glacier changes. The obtained results offer insights into understanding the evolution mechanism of hydrological processes in such a data-sparse region under changing environment.</p>


2020 ◽  
Vol 24 (5) ◽  
pp. 15-24
Author(s):  
Tran Thanh Long ◽  
Sucharit Koontanakulvong

Since the 1990s, under the pressure of socio-economic growth in the Ho Chi Minh City and nearby provinces, the heavy-extraction of groundwater of this area has dramatically increased to meet high water demand for domestic and industrial purposes. Although the groundwater – Saigon River interaction significantly contributes to groundwater reserves, researchers have been less attentive to fully describe and understand the river recharge. This study attempts to explore the impact of groundwater-river interaction to aquifer system due to pumping increase via field seepage and (O18, H2) isotopic measurements in the Saigon River Basin, South East of Vietnam. The analysis showed that river bed conductance at 0 km, 30 km, 60 km, 80 km, and 120 km were 4.5 m2/day/m, 4.2 m2/day/m, 2.5 m2/day/m, 1.7 m2/day/m, and 0.25 m2/day/m respectively. The riverbed conductance relies on the sand percentage of sediment. The composition δO18 in groundwater, river, and precipitation indicates that river recharge to groundwater exists mainly in the lower part of the basin. In contrast to downstream, the composition of δO18 was signified that the river primarily gains water from groundwater upstream. Under pressure of developing economies, the groundwater pumping in the Saigon river basin increased from 175,000 m3/day in 1995 to 880,000 m3/day in 2017. As a consequence of the increased pumping rate, the groundwater discharge to the river decreases from 1.6 to 0.7 times of groundwater pumping in upstream, while the amount of Saigon river recharge increases by 33% to 50% of the total groundwater pumping downstream. Under the exceedance pumping rate, the aquifers in the Saigon River Basin release less water to the Saigon river and it tends to gain more water through the river - groundwater interaction process. Therefore, groundwater management in downstream aquifers needs better joint planning with surface water development plans, particularly for surface water supply utilities which still struggle to satisfy the water demand of the development plan.


Sign in / Sign up

Export Citation Format

Share Document