scholarly journals Experimental observations of aquifer storage and recovery in brackish aquifers using multiple partially penetrating wells

Author(s):  
Lilli Witt ◽  
Moritz J. Müller ◽  
Maike Gröschke ◽  
Vincent E. A. Post

AbstractAquifer storage and recovery systems using multiple partially penetrating wells (MPPW-ASR) can form a viable solution to the problem of freshwater buoyancy when using brackish aquifers for freshwater storage. This study presents the result of a series of laboratory experiments that aimed at visualizing the shape of freshwater bodies injected into a brackish aquifer and determining the effect on the recovery efficiency (RE) of several MPPW-ASR operational variables. A model aquifer was built in a Plexiglas tank using glass beads and water was injected and abstracted through point and vertical wells, which were operated in various combinations. Numerical models were used to support the interpretation of the time-lapse photographs, and showed that three-dimensional flow effects had to be considered for a correct interpretation of the visible dye patterns. Upward migration of both fresh (during injection) and brackish water (during recovery) along the vertical wells was observed, indicating that the role of well infrastructure as conduits is a critical design criterion for real-world systems. Gravitational instabilities formed when freshwater did not extend all the way to the top of the aquifer, and this negatively impacted the RE by causing greater mixing. The positive freshwater buoyancy led to freshwater bodies that became narrower with depth, and the formation of thin, elongated buffer zones along the aquifer top in multicycle experiments. Up-coning below abstraction wells resulted in lower RE values, reinforcing the potential of scavenger wells to enhance MPPW-ASR system performance.

Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. WA61-WA69 ◽  
Author(s):  
Kristofer Davis ◽  
Yaoguo Li ◽  
Michael Batzle

We studied time-lapse gravity surveys applied to the monitoring of an artificial aquifer storage and recovery (ASR) system in Leyden, Colorado. An abandoned underground coal mine has been developed into a subsurface water reservoir. Water from surface sources is injected into the artificial aquifer during winter for retrieval and use in summer. As a key component in the geophysical monitoring of the artificial ASR system, three microgravity surveys were conducted over the course of ten months during the initial water-injection stage. The time-lapse microgravity surveys successfully detected the distribution of injected water as well as its general movement. Quantitative interpretation based on 3D inversions produced hydrologically meaningful density-contrast models and imaged major zones of water distribution. The site formed an ideal natural laboratory for investigating various aspects of time-lapse gravity methodology. Through this application, we have studied systematically all steps of the method, including survey design, data acquisition, processing, and quantitative interpretation.


2021 ◽  
Vol 13 (6) ◽  
pp. 3502
Author(s):  
Somnath Bandyopadhyay ◽  
Aviram Sharma ◽  
Satiprasad Sahoo ◽  
Kishore Dhavala ◽  
Prabhakar Sharma

Among the several options of managed aquifer recharge (MAR) techniques, the aquifer storage and recovery (ASR) is a well-known sub-surface technique to replenish depleted aquifers, which is contingent upon the selection of appropriate sites. This paper explores the potential of ASR for groundwater recharge in the hydrological, hydrogeological, social, and economic context of South Bihar in India. Based on the water samples from more than 137 wells and socio-economic surveys, ASR installations were piloted through seven selected entrepreneurial farmers in two villages of South Bihar. The feasibility of ASR in both hard rock and deep alluvial aquifers was demonstrated for the prominent aquifer types in the marginal alluvial plains of South Bihar and elsewhere. It was postulated through this pilot study that a successful spread of ASR in South Bihar can augment usable water resources for agriculture during the winter cropping season. More importantly, ASR can adapt to local circumstances and challenges under changing climatic conditions. The flexible and participatory approach in this pilot study also allowed the farmers to creatively engage with the design and governance aspects of the recharge pit. The entrepreneurial farmers-led model builds local accountability, creates avenues for private investments, and opens up the space for continued innovation in technology and management, while also committing to resource distributive justice and environmental sustainability.


2001 ◽  
Author(s):  
Simon Toze ◽  
Peter Dillon ◽  
Paul Pavelic ◽  
Brenton Nicholson ◽  
Michel Gibert

2016 ◽  
Vol 44 (12) ◽  
pp. 1672-1684 ◽  
Author(s):  
Joanne L. Vanderzalm ◽  
Declan W. Page ◽  
Karen E. Barry ◽  
Kathleen Scheiderich ◽  
Dennis Gonzalez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document