scholarly journals Potential for Aquifer Storage and Recovery (ASR) in South Bihar, India

2021 ◽  
Vol 13 (6) ◽  
pp. 3502
Author(s):  
Somnath Bandyopadhyay ◽  
Aviram Sharma ◽  
Satiprasad Sahoo ◽  
Kishore Dhavala ◽  
Prabhakar Sharma

Among the several options of managed aquifer recharge (MAR) techniques, the aquifer storage and recovery (ASR) is a well-known sub-surface technique to replenish depleted aquifers, which is contingent upon the selection of appropriate sites. This paper explores the potential of ASR for groundwater recharge in the hydrological, hydrogeological, social, and economic context of South Bihar in India. Based on the water samples from more than 137 wells and socio-economic surveys, ASR installations were piloted through seven selected entrepreneurial farmers in two villages of South Bihar. The feasibility of ASR in both hard rock and deep alluvial aquifers was demonstrated for the prominent aquifer types in the marginal alluvial plains of South Bihar and elsewhere. It was postulated through this pilot study that a successful spread of ASR in South Bihar can augment usable water resources for agriculture during the winter cropping season. More importantly, ASR can adapt to local circumstances and challenges under changing climatic conditions. The flexible and participatory approach in this pilot study also allowed the farmers to creatively engage with the design and governance aspects of the recharge pit. The entrepreneurial farmers-led model builds local accountability, creates avenues for private investments, and opens up the space for continued innovation in technology and management, while also committing to resource distributive justice and environmental sustainability.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2575
Author(s):  
Joanne L. Vanderzalm ◽  
Declan W. Page ◽  
Karen E. Barry ◽  
Dennis Gonzalez

Managed aquifer recharge (MAR) is the intentional recharge of water to suitable aquifers for subsequent beneficial use or to achieve environmental benefits. Well injection techniques for MAR, such as Aquifer Storage and Recovery (ASR), rely on implementing appropriate design and defining the operational parameters to minimise well clogging and maintain sustainable rates of recharge over the long term. The purpose of this study was to develop water quality targets and pre-treatment requirements for recycled water to allow sustained recharge and recovery in a medium-coarse siliceous aquifer. The recharge water is a blend of 40% Class A recycled water and 60% reverse osmosis (RO)-treated Class A recycled water. Four source waters for MAR were evaluated: (1) this blend with no further treatment, and this blend with additional treatment using: (2) a 20 µm sediment cartridge filter, (3) a 5 µm sediment cartridge filter, or (4) a 5 µm granular activated carbon (GAC) cartridge filter. All four treatment options were also further disinfected with chlorine. The four blended and treated recycled waters were used in laboratory columns packed with aquifer material under saturated conditions at constant temperature (20.7 °C) with light excluded for up to 42 days. Substantial differences in the changes in hydraulic conductivity of the columns were observed for the different treatments within 14 days of the experiment, despite low turbidity (<2 NTU) of the blend waters. After 14 days, the GAC-treated water had a 7% decline in hydraulic conductivity, which was very different from the other three blend waters, which had declines of 39–52%. Based on these results and consistent with previous studies, a target biodegradable dissolved organic carbon (BDOC) level of <0.2 mg/L was recommended to ensure a biologically stable source of water to reduce clogging during recharge.


2020 ◽  
Vol 176 ◽  
pp. 67-77
Author(s):  
Ali Al-Maktoumi ◽  
Slim Zekri ◽  
Mustafa El-Rawy ◽  
Osman Abdalla ◽  
Rashid Al-Abri ◽  
...  

Author(s):  
Stefano Segadelli ◽  
Maria Filippini ◽  
Anna Monti ◽  
Fulvio Celico ◽  
Alessandro Gargini

AbstractEstimation of aquifer recharge is key to effective groundwater management and protection. In mountain hard-rock aquifers, the average annual discharge of a spring generally reflects the vertical aquifer recharge over the spring catchment. However, the determination of average annual spring discharge requires expensive and challenging field monitoring. A power-law correlation was previously reported in the literature that would allow quantification of the average annual spring discharge starting from only a few discharge measurements in the low-flow season, in a dry summer climate. The correlation is based upon the Maillet model and was previously derived by a 10-year monitoring program of discharge from springs and streams in hard-rock aquifers composed of siliciclastic and calcareous turbidites that did not have well defined hydrogeologic boundaries. In this research, the same correlation was applied to two ophiolitic (peridotitic) hard-rock aquifers in the Northern Apennines (Northern Italy) with well-defined hydrogeologic boundaries and base-outflow springs. The correlation provided a reliable estimate of the average annual spring discharge thus confirming its effectiveness regardless of bedrock lithology. In the two aquifers studied, the measurable annual outputs (i.e. sum of average annual spring discharges) could be assumed equal to the annual inputs (i.e. vertical recharge) based on the clear-cut aquifer boundaries and a quick groundwater circulation inferable from spring water parameters. Thus, in such setting, the aforementioned correlation also provided an estimate of the annual aquifer recharge allowing the assessment of coefficients of infiltration (i.e. ratio between aquifer recharge and total precipitation) ranging between 10 and 20%.


2001 ◽  
Author(s):  
Simon Toze ◽  
Peter Dillon ◽  
Paul Pavelic ◽  
Brenton Nicholson ◽  
Michel Gibert

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Claudia Santibañez ◽  
Luz María de la Fuente ◽  
Elena Bustamante ◽  
Sergio Silva ◽  
Pedro León-Lobos ◽  
...  

The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000 ha) postoperative tailings storage facilities (TSFs). A field trial with 13 treatments was established on a TSF to test the efficacy of six waste-type locally available amendments (grape and olive residues, biosolids, goat manure, sediments from irrigation canals, and rubble from Cu-oxide lixiviation piles) during early phases of site rehabilitation. Results showed that, even though an interesting range of waste-type materials were tested, biosolids (100 t ha-1dry weight, d.w.) and grape residues (200 t ha-1d.w.), either alone or mixed, were the most suitable organic amendments when incorporated into tailings to a depth of 20 cm. Incorporation of both rubble from Cu-oxide lixiviation piles and goat manure into upper tailings also had effective results. All these treatments improved chemical and microbiological properties of tailings and lead to a significant increase in plant yield after three years from trial establishment. Longer-term evaluations are, however required to evaluate self sustainability of created systems without further incorporation of amendments.


Sign in / Sign up

Export Citation Format

Share Document