scholarly journals Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators

CALCOLO ◽  
2021 ◽  
Vol 58 (3) ◽  
Author(s):  
Davide Bianchi

AbstractGiven a linear self-adjoint differential operator $$\mathscr {L}$$ L along with a discretization scheme (like Finite Differences, Finite Elements, Galerkin Isogeometric Analysis, etc.), in many numerical applications it is crucial to understand how good the (relative) approximation of the whole spectrum of the discretized operator $$\mathscr {L}\,^{(n)}$$ L ( n ) is, compared to the spectrum of the continuous operator $$\mathscr {L}$$ L . The theory of Generalized Locally Toeplitz sequences allows to compute the spectral symbol function $$\omega $$ ω associated to the discrete matrix $$\mathscr {L}\,^{(n)}$$ L ( n ) . Inspired by a recent work by T. J. R. Hughes and coauthors, we prove that the symbol $$\omega $$ ω can measure, asymptotically, the maximum spectral relative error $$\mathscr {E}\ge 0$$ E ≥ 0 . It measures how the scheme is far from a good relative approximation of the whole spectrum of $$\mathscr {L}$$ L , and it suggests a suitable (possibly non-uniform) grid such that, if coupled to an increasing refinement of the order of accuracy of the scheme, guarantees $$\mathscr {E}=0$$ E = 0 .

2007 ◽  
Vol 44 (3) ◽  
pp. 391-409 ◽  
Author(s):  
Melda Duman ◽  
Alp Kiraç ◽  
Oktay Veliev

We obtain asymptotic formulas with arbitrary order of accuracy for the eigenvalues and eigenfunctions of a nonselfadjoint ordinary differential operator of order n whose coefficients are Lebesgue integrable on [0, 1] and the boundary conditions are strongly regular. The orders of asymptotic formulas are independent of smoothness of the coefficients.


Author(s):  
Richard C. Gilbert

SynopsisFormulas are determined for the deficiency numbers of a formally symmetric ordinary differential operator with complex coefficients which have asymptotic expansions of a prescribed type on a half-axis. An implication of these formulas is that for any given positive integer there exists a formally symmetric ordinary differential operator whose deficiency numbers differ by that positive integer.


Author(s):  
Abdizhahan Sarsenbi

In this work, we studied the Green’s functions of the second order differential operators with involution. Uniform equiconvergence of spectral expansions related to the second-order differential operators with involution is obtained. Basicity of eigenfunctions of the second-order differential operator operator with complex-valued coefficient is established.


1996 ◽  
Vol 48 (4) ◽  
pp. 758-776 ◽  
Author(s):  
H. D. Fegan ◽  
B. Steer

AbstractWe investigate questions of spectral symmetry for certain first order differential operators acting on sections of bundles over manifolds which have a group action. We show that if the manifold is in fact a group we have simple spectral symmetry for all homogeneous operators. Furthermore if the manifold is not necessarily a group but has a compact Lie group of rank 2 or greater acting on it by isometries with discrete isotropy groups, and let D be a split invariant elliptic first order differential operator, then D has equivariant spectral symmetry.


1980 ◽  
Vol 32 (5) ◽  
pp. 1045-1057 ◽  
Author(s):  
Patrick J. Browne ◽  
Rodney Nillsen

Throughout this paper we shall use I to denote a given interval, not necessarily bounded, of real numbers and Cn to denote the real valued n times continuously differentiable functions on I and C0 will be abbreviated to C. By a differential operator of order n we shall mean a linear function L:Cn → C of the form1.1where pn(x) ≠ 0 for x ∊ I and pi ∊ Cj 0 ≦ j ≦ n. The function pn is called the leading coefficient of L.It is well known (see, for example, [2, pp. 73-74]) thai a differential operator L of order n uniquely determines both a differential operator L* of order n (the adjoint of L) and a bilinear form [·,·]L (the Lagrange bracket) so that if D denotes differentiation, we have for u, v ∊ Cn,1.2


1988 ◽  
Vol 31 (4) ◽  
pp. 432-438
Author(s):  
Allan M. Krall

AbstractThe self-adjoint extensions of the singular differential operator Ly = [(py’)’ + qy]/w, where p < 0, w > 0, q ≧ mw, are characterized under limit-circle conditions. It is shown that as long as the coefficients of certain boundary conditions define points which lie between two lines, the extension they help define has the same lower bound.


Author(s):  
Gong Hee Lee ◽  
Ae Ju Cheong

Spatial discretization errors result from both the numerical order of accuracy of the discretization scheme, and from grid spacing. It is well known that second, or higher, order discretization schemes are potentially able to produce high-quality solutions. In addition, when either the flow is not aligned with the grid, or is complex, it is recommended that the first order discretization scheme not be used for the convection term, if possible. However, the higher-order scheme can also result in convergence difficulties and instabilities at certain flow conditions. In this study, to examine the effect of the numerical order of accuracy of the discretization scheme on the prediction accuracy for the turbulent flow structure inside fuel assembly with the split-type mixing vanes, simulations were conducted with the commercial CFD (Computational Fluid Dynamics) software, ANSYS CFX R.14. Two different types of the discretization scheme for the convection-terms-of-momentum and -turbulence equations, i.e. 1st order upwind scheme and a high resolution scheme, were used. The predicted results were compared with the measured data from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannles-Horizontal) facility, installed in the KAERI (Korea Atomic Energy Research Institute).


1997 ◽  
Vol 145 ◽  
pp. 125-142
Author(s):  
Takeshi Mandai

Consider a partial differential operator(1.1) where K is a non-negative integer and aj,a are real-analytic in a neighborhood of (0, 0)


2017 ◽  
Vol 24 (1) ◽  
pp. 113-134 ◽  
Author(s):  
Chiara Corsato ◽  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractWe discuss existence, multiplicity, localisation and stability properties of solutions of the Dirichlet problem associated with the gradient dependent prescribed mean curvature equation in the Lorentz–Minkowski space$\left\{\begin{aligned} \displaystyle{-}\operatorname{div}\biggl{(}\frac{\nabla u% }{\sqrt{1-|\nabla u|^{2}}}\biggr{)}&\displaystyle=f(x,u,\nabla u)&&% \displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega.\end{aligned}\right.$The obtained results display various peculiarities, which are due to the special features of the involved differential operator and have no counterpart for elliptic problems driven by other quasilinear differential operators. This research is also motivated by some recent achievements in the study of prescribed mean curvature graphs in certain Friedmann–Lemaître–Robertson–Walker, as well as Schwarzschild–Reissner–Nordström, spacetimes.


Author(s):  
E. Müller-Pfeiffer

SynopsisWe prove that the selfadjoint elliptic differential equation (1) has rectangular nodal domains if the quadratic form of the equation takes on negative values. The existence of nodal domains is closely connected with the position of the smallest point of the spectrum of the corresponding selfadjoint operator (Friedrichs extension). If the smallest point of a second order selfadjoint differential operator with Dirichlet boundary conditions is an eigenvalue, then this eigenvalue is strictly increasing when the (possibly unbounded) domain, where the coefficients of the differential operator are denned, is shrinking (Theorem 4).


Sign in / Sign up

Export Citation Format

Share Document