Optical changes of human dentin after non-vital bleaching and effect of Er,Cr:YSGG laser on micro-shear bond strength of a self-etch and an etch-and-rinse adhesive system

2020 ◽  
Vol 36 (1) ◽  
pp. 189-196
Author(s):  
İzgen Karakaya ◽  
Tağmaç Özberk
2021 ◽  
Vol 15 (2) ◽  
pp. 82-86
Author(s):  
Mahmoud Bahari ◽  
Siavash Savadi Oskoee ◽  
Mohammad Esmaeel Ebrahimi Chaharom ◽  
Nasim Molayi

Background. Contamination of dentin surface is one of the common problems in restorative dentistry. The aim was to investigate the effects of different surface contaminators on the dentin shear bond strength (SBS) of universal adhesive system (UAS) applied in etch-and-rinse (ER) and self-etch (SE) strategies. Methods. One hundred forty-four maxillary anterior sound human teeth were divided into six groups based on the types of surface contaminators: no surface contaminator (control) and experimental groups contaminated with blood, saliva, aluminium chloride (ALC), ferric sulphate (FS), and caries disclosing agent (CDA). Then, each group was further subdivided into two, based on the application strategy of UAS (ER and SE). After applying the adhesive according to the manufacturer’s instructions, and bonding cylindrical composite samples, the SBS was measured. The data were analysed using two-way ANOVA, Tukey’s HSD test and t test (P<0.05). Results. The SBS in all contaminated groups, except for CDA, was significantly lower in both ER and SE strategies compared to control group (P<0.05). A comparison between the application strategies revealed that ER and SE were only significantly different in the FS contaminated group (P<0.05). Conclusion. All tested contaminators, except CDA, significantly decreased SBS of UAS in both ER and SE strategies.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Cécile Bernard ◽  
Cyril Villat ◽  
Hazem Abouelleil ◽  
Marie-Paule Gustin ◽  
Brigitte Grosgogeat

The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was appliedin vivoto a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of anin vitrostudy, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL).


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Fateme Vasei ◽  
Farahnaz Sharafeddin

Objective: To assess the shear bond strength (SBS) of resin composite to deep dentin, using 1 and 2.5% chitosan pretreatment as well as different adhesive systems. Material and Methods: 80 human maxillary molars were randomly divided to eight groups according to the type of adhesive system and dentin pretreatment (n = 10): I) two-step self-etch system (Clearfil SE bond); II) two-step etch-andrinse system (Adper single bond 2); III) 2.5% chitosan + Clearfil SE bond; IV) 2.5% chitosan +etch + Adper single bond 2; V) etch + 2.5% chitosan + Adper single bond 2; VI) 1% chitosan + Clearfil SE bond; VII) 1% chitosan + etch + Adper single bond 2; VIII) etch + 1% chitosan + Adper single bond 2 (chitosan solution (w/v): 2.5 g and 1 g of chitosan (Sigma Aldrich, USA) was dissolved in 100 ml of 1% acetic acid). Plastic molds were positioned on dentin and filled with composite (Z350, 3M ESPE, USA). SBS (MPa) was tested using a universal testing machine. ANOVA tests, Tukey’s test, and independent t test were used to analyze data (p < 0.05). Results: The highest SBS value among self-etch groups was observed with 1% chitosan (p = 0.001). In the etch-and-rinse group, the SBS of 1% chitosan was significantly lower than the other groups. Chitosan treatment following acid etching led to higher SBS in comparison to when chitosan was applied before etching, with the significant difference in 1% concentration (p = 0.030). A predominance of mix fractures was observed in dentin. Conclusion: Improved dentin bond strength can be achieved through immediate dentin pretreatment with 1% chitosan in self-etch adhesive systems. Chitosan Pretreatment may not be advantageous for etch-and-rinse adhesive systems. Keywords Adhesive system; Chitosan; Deep dentin; Shear strength.


Author(s):  
Tubayesha Hassan ◽  
MH Sattar

As a means of regular practice in orthodontics and aesthetic dentistry, resin based adhesive systems are being used exclusively. Keeping up with the ever-increasing demand for aesthetic dental treatment all over the world, newer and more improved adhesive systems have been developed. However, regarding the comparison as to which bonding system performs better in clinical perspective, there is lack of existing scientific review articles. In this review, we tend to explore the conventional etch and rinse bonding system and the self-etch primer bonding system. The different tests to assess and compare bond strength between these two types of adhesives from various bibliography are discussed. The results of shear bond strength test, adhesive remnant index (ARI), enamel-adhesive interface using scanning electron microscope (SEM) and the effect of saliva contamination and time are discussed. Interestingly, each system has its strengths and weaknesses. In shear bond strength, self-etch bonding systems clearly exhibits less strength than conventional bonding systems. Resin tags into enamel surface are shorter in self-etch primer adhesives which results from milder etching to enamel compared to the conventional aid-etch and rinse adhesives. Contrarily, the irreversible changes to enamel surface is more aggressive in conventional acid-etching which states that self-etching systems are better according to the principles of minimal intervention dentistry. Ban J Orthod & Dentofac Orthop, April 2017; Vol-7 (1-2), P.20-26


2011 ◽  
Vol 28 (4) ◽  
pp. 236-241
Author(s):  
Larry Kimberlin ◽  
Phil Brown

Canine dentin has increased size and number of dentinal tubules compared to human dentin. With less intertubular surface area for bonding to composite material in dog teeth, bonding shear strength may be affected negatively. This study was designed to compare the shear bonding strength of canine and human dentin. It also compared bond strength of two different acid etch systems when used with the same composite resin. The shear bond strength of composite cylinders to dentin was measured in 30 extracted canine cuspid teeth and a similar number of human molar teeth. Shear bond strength was 40 % greater for human compared with canine dentin. This significantly different (P < 0.05) result validates the hypothesis that dentin bond strength is positively correlated with the area of intertubular dentin. Results also indicated that shear bond strength was greater in the self-etching bond system compared with the etch and rinse system, although this difference was not significant.


2008 ◽  
Vol 78 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Mona A. Montasser ◽  
James L. Drummond ◽  
Carla A. Evans

Abstract Objective: To compare rebonding of orthodontic brackets based on the hypothesis that no difference would be found between the adhesive systems with respect to shear bond strength, mode of failure, and clinical failure rates. Materials and Methods: The three adhesive systems included two self-etch primers (Transbond and M-Bond) and a conventional phosphoric acid etch (Rely-a-Bond). The sample size was 20 premolars for each adhesive system. The shear bond strength was tested 24 hours after bracket bonding with the bonding/debonding procedures repeated two times after the first debonding. Bond strength, adhesive remnant index (ARI), and failure sites were evaluated for each debonding. Statistical analysis consisted of a two-way analysis of variance (ANOVA) followed by Scheffè analysis. The clinical portion evaluated 15 patients over a 12-month period. Results: The mean shear bond strengths after the first, second, and third debondings for Rely-a-Bond were 8.4 ± 1.8, 10.3 ± 2.4, and 14.1 ± 3.3 MPa, respectively; for Transbond 11.1 ± 4.6, 13.6 ± 4.5, and 12.9 ± 4.4 MPa, respectively; and for M-Bond 8.7 ± 2.7, 10.4 ± 2.4, and 12.4 ± 3.4 MPa, respectively. After the three debondings the mean shear bond strength increased significantly from the first to the third debonding for Rely-a-Bond and M-bond (P ≤ .001), but did not change for Transbond (P = .199). Conclusions: The original hypothesis is not rejected. The two self-etching primers showing higher or comparable bond strength to the conventional phosphoric etch with less adhesive remnant on the enamel surface after the first debonding. With repeated bonding/debonding, the differences in the bond strength, ARI, and failure site were not significantly different. There was no difference in the clinical performance of the three adhesive systems (P = .667).


2014 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Dewi Puspitasari ◽  
Andi Soufyan ◽  
Ellyza Herda

Composite resin is a widely used aesthetic restoration. The restoration can fail due to secondary caries. Chlorhexidinegluconate 2% is used as a cavity disinfectant to eliminate microorganisms on the prepared cavity and to prevent thesecondary caries. The purpose of this study was to analyze the effect of chlorhexidine gluconate 2% to the bondstrength of composite resin with self etch system adhesive on dentine. Sixteen specimens of buccal dentine of premolarscrown are divided into 2 different groups. Group I: Clearfil SE Bond self-etch primer was applied for 20 seconds,Clearfil SE Bond bonding was applied for 5 seconds and polymerized for 10 seconds. Composite resin was constructedincrementally and polymerized for 20 seconds. Group II: prior to self etch primer application as in group I,chlorhexidine gluconate 2% was applied for 15 seconds. Shear bond strength was tested using Testing machine andanalyzed with unpaired T test. The highest shear bond strength was obtained by applying chlorhexidine gluconate 2%.The study concludes that chlorhexidine gluconate 2% application to dentine did not affect significantly to the bondstrength composite resin using self etch adhesive systems.


2015 ◽  
Vol 16 (5) ◽  
pp. 335-339 ◽  
Author(s):  
Zeeshan H Ahmad ◽  
Sukumaran Anil ◽  
Alaa El Araby ◽  
Mohammad D Al Amri

ABSTRACT Objective To evaluate the influence of Expasyl® gingival retraction paste on the shear bond strength of self-etch and total-etch adhesive systems. Materials and methods Twenty-four specimens of extracted, caries-free, sound human molars were used in this study. The molars were then cut vertically into halves through the buccal and lingual cusps. Forty-eight specimens were divided into four groups (total-etch, total-etch with Expasyl application, self-etch, self-etch with Expasyl application) and the shear bond strength was tested. Results Expasyl significantly reduced the shear bond strength of the self-etch and total-etch adhesive systems. The self-etch system showed relatively lower performance compared with the total-etch adhesive system. The shear bond strength values of the total-etch adhesive without Expasyl showed the highest bond strength (21.48 ± 2.89), while the self-etching group adhesive treated with Expasyl showed the lowest shear bond strength value (14.89 ± 1.81). Conclusion From the observations of this in vitro study, it can be concluded that the use of Expasyl® gingival retraction system can negatively affect bond strength of adhesives. The total-etch system showed better compatibility to the Expasyl gingival retraction system than the self-etch. How to cite this article Al Baker AMA, El Araby A, Al Amri MD, Sukumaran A. The Impact of Expasyl® Gingival Retraction Paste on the Bond Strength of Self-etch and Total-etch Systems. J Contemp Dent Pract 2015;16(5):335-339.


Sign in / Sign up

Export Citation Format

Share Document