Local Well-posedness for Linearized Degenerate MHD Boundary Layer Equations in Analytic Setting

2019 ◽  
Vol 35 (8) ◽  
pp. 1402-1418
Author(s):  
Ya Jun Li ◽  
Wen Dong Wang
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Wei-Xi Li ◽  
Rui Xu

<p style='text-indent:20px;'>We consider the two-dimensional MHD Boundary layer system without hydrodynamic viscosity, and establish the existence and uniqueness of solutions in Sobolev spaces under the assumption that the tangential component of magnetic fields dominates. This gives a complement to the previous works of Liu-Xie-Yang [Comm. Pure Appl. Math. 72 (2019)] and Liu-Wang-Xie-Yang [J. Funct. Anal. 279 (2020)], where the well-posedness theory was established for the MHD boundary layer systems with both viscosity and resistivity and with viscosity only, respectively. We use the pseudo-differential calculation, to overcome a new difficulty arising from the treatment of boundary integrals due to the absence of the diffusion property for the velocity.</p>


Author(s):  
V. Ananthaswamy ◽  
K. Renganathan

In this paper we discuss with magneto hydrodynamic viscous flow due to a shrinking sheet in the presence of suction. We also discuss two dimensional and axisymmetric shrinking for various cases. Using similarity transformation the governing boundary layer equations are converted into its dimensionless form. The transformed simultaneous ordinary differential equations are solved analytically by using Homotopy analysis method. The approximate analytical expression of the dimensionless velocity, dimensionless temperature and dimensionless concentration are derived using the Homotopy analysis method through the guessing solutions. Our analytical results are compared with the previous work and a good agreement is observed.


1970 ◽  
Vol 21 (1) ◽  
pp. 91-99 ◽  
Author(s):  
T. Y. Na

SummaryAn initial value method is introduced in this paper for the solution of the two-point non-linear ordinary differential equations resulting from an analysis of the MHD boundary-layer flow originally treated by Greenspan and Carrier. By using this method, the iteration process is eliminated. The method is seen to be applicable to the solution of similar two-point boundary value problems where certain physical parameters appear either in the differential equation or in the boundary conditions and solutions for a range of the parameter are sought.


1982 ◽  
Vol 5 (2) ◽  
pp. 377-384 ◽  
Author(s):  
D. B. Ingham ◽  
L. T. Hildyard

The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.


Sign in / Sign up

Export Citation Format

Share Document