Characterization of Novel Orange Fluorescent Protein Cloned from Cnidarian Tube Anemone Cerianthus sp.

2007 ◽  
Vol 9 (4) ◽  
pp. 469-478 ◽  
Author(s):  
Denis Tsz-Ming Ip ◽  
Kam-Bo Wong ◽  
David Chi-Cheong Wan
Biochemistry ◽  
2008 ◽  
Vol 47 (44) ◽  
pp. 11573-11580 ◽  
Author(s):  
Akihiro Kikuchi ◽  
Eiko Fukumura ◽  
Satoshi Karasawa ◽  
Hideaki Mizuno ◽  
Atsushi Miyawaki ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
Author(s):  
J Hollis Rice ◽  
Reginald J Millwood ◽  
Richard E Mundell ◽  
Orlando D Chambers ◽  
Laura L Abercrombie ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Kensuke Kimura ◽  
Masaki Ieda ◽  
Hideaki Kanazawa ◽  
Takahide Arai ◽  
Takashi Kawakami ◽  
...  

Background : Cardiac hypertrophy induces the fetal isoform of genes (rejuvenation), including contractile proteins, ion channels, and natriuretic peptides. Cardiac sympathetic nerve function is known to be altered in cardiac hypertrophy and congestive heart failure. We recently reported that alteration of cardiac sympathetic nerves (CSN) was caused by their rejuvenation (Circ Res, 2007). The present study was designed to examine the precise characterization of the rejuvenation of CSN in cardiac hypertrophy. Methods and Results : RV hypertrophy was produced by consistent hypoxia (10% O 2 ) in C57/BL6 mice. RV pressure increased to 47 mmHg, and RV/(body weight) ratio increased by 1.6 fold. Nerve growth factor protein was augmented in hypertrophic RV, but was unchanged in LV. Double-transgenic mice, which specifically express eGFP (enhanced green fluorescent protein) in the sympathetic neurons, was generated by crossing dopamine β-hydroxylase (DBH)-Cre mice with Floxed-eGFP mice. The eGFP-positive CSN were markedly increased in hypertrophic RV, but not in LV. Nerve density, quantitated by immunostained area with eGFP and GAP43 (growth-associated corn marker), increased by 8.1 and 9.3 fold, respectively, in RV, but not in LV. (4) Catecholamine content was attenuated in RV. (5) Western blot revealed that tyrosine hydroxylase was markedly down-regulated in RV. (6) Immunostaining clearly demonstrated that the immature neuron markers, PSA-NCAM (highly polysialylated neural cell adhesion molecule) and Ulip-1 (Unc-33-like phosphoprotein 1), were expressed in CSN in hypertrophic RV and stellate ganglia. Basic helix-loop-helix transcription factor, Mash-1 (mammalian achaete-scute complex homolog 1) was strongly expressed in the stellate ganglia. (7) Immature neuron marker-immunopositive cells in stellate ganglia had a markedly decreased TH expression. Conclusion : The rejuvenated CSN showed various immature and fetal neuron marker genes at not only the peripheral axons but also the cellular bodies at the stellate ganglia. Rejuvenation of CSN might be critically involved in the alteration of sympathetic neuronal function in cardiac hypertrophy, including depressed norepinephrine synthesis and hyperinnervation.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Christine A Thornton ◽  
Allen M Andres ◽  
Genaro Hernandez ◽  
Jon Sin ◽  
Roberta Gottlieb

Fluorescent Timer, or DsRed1-E5, is a mutant of the red fluorescent protein, dsRed, developed by Terskikh and colleagues. Its fluorescence shifts over time from green to red as the protein matures. This molecular clock gives temporal and spatial information on protein turnover. To visualize mitochondrial turnover, we targeted Timer to the mitochondrial matrix with a mitochondrial targeting sequence (coined “MitoTimer”) and cloned it into a tetracycline-inducible promoter construct to regulate its expression. Here we report characterization of this novel fluorescent reporter for mitochondrial dynamics. Tet-On HEK 293 cells were transfected with pTRE-tight-MitoTimer and induced production with doxycycline. Mitochondrial distribution was demonstrated by fluorescence microscopy and verified by subcellular fractionation and western blot analysis. Doxycycline addition for as little as 1hr was sufficient to label mitochondria. MitoTimer was detected as early as 4hr following doxycycline addition, and persisted in mitochondria for at least 72hr. The color-specific conformation of MitoTimer was stable after fixation with 4% paraformaldehyde. MitoTimer matured to red fluorescence within 48hr, at which time a second pulse of doxycycline induced expression of green (immature) MitoTimer which was selectively incorporated into a subset of mitochondria actively engaged in protein import. The extent of new protein incorporation during a second pulse was increased under conditions of mito-biogenesis and reduced if mitochondrial membrane potential was dissipated. We conclude that MitoTimer can be used to monitor mitophagy and biogenesis.


Sign in / Sign up

Export Citation Format

Share Document