scholarly journals Effect of spineboard and headblocks on the image quality of head CT scans

2016 ◽  
Vol 23 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Baukje Hemmes ◽  
Cécile R. L. P. N. Jeukens ◽  
Aliaa Al-Haidari ◽  
Paul A. M. Hofman ◽  
Ed S. vd Linden ◽  
...  
Keyword(s):  
Ct Scans ◽  
2014 ◽  
Vol 41 (6Part1) ◽  
pp. 061910 ◽  
Author(s):  
Uros Stankovic ◽  
Marcel van Herk ◽  
Lennert S. Ploeger ◽  
Jan-Jakob Sonke

Author(s):  
Yang-Ting Hsu ◽  
Jo-Chi Jao

Radiologic technologists face various types of patients during multi-detector computed tomography (CT) examinations. In emergency departments, it is common to have patients who cannot follow instructions for the examinations. The asymmetric axial view of the head CT might affect the correctness of the clinician’s diagnosis. This study aimed to assess the impact of head positioning on the image quality of head CT using two phantoms. All scans were performed on a 16-slice CT scanner. In the control group, the tilted angle of the phantoms was 0[Formula: see text], and no multiplanar reconstruction (MPR) was performed. In the experimental groups, the tilted angles of the phantoms were 5[Formula: see text], 10[Formula: see text] and 15[Formula: see text], respectively, and MPR was performed afterwards. The results showed that if the head was tilted during the head CT examinations, image asymmetry and artifacts appeared without MPR. After MPR, one phantom showed that there were significant differences and the other phantom showed no significant differences quantitatively in image symmetry and artifacts between experimental groups and the control group, while both phantoms showed no significant differences qualitatively in image symmetry and artifacts between experimental groups and the control group. Although MPR can correct the image asymmetry and artifacts caused by tilted head positioning to some extent, it consumes time. Therefore, technologists should position the head as exactly as possible when performing head CT examinations.


2019 ◽  
Vol 45 (10) ◽  
pp. 3361-3368 ◽  
Author(s):  
Xinhui Duan ◽  
Lakshmi Ananthakrishnan ◽  
Jeffrey B. Guild ◽  
Yin Xi ◽  
Prabhakar Rajiah

Injury ◽  
2014 ◽  
Vol 45 (12) ◽  
pp. 2111-2112
Author(s):  
Michael J. Anderton ◽  
Martyn E. Lovell

2022 ◽  
Author(s):  
Anja Braune ◽  
Liane Oehme ◽  
Robert Freudenberg ◽  
Frank Hofheinz ◽  
Jörg van den Hoff ◽  
...  

Abstract Background: The PET nuclide and reconstruction method can have a considerable influence on spatial resolution and image quality of PET/CT scans, which can, for example, influence the diagnosis in oncology. The individual impact of the positron energy of 18F, 68Ga and 64Cu on spatial resolution and image quality of PET/CT scans acquired using a clinical, digital scanner was compared. Furthermore, the impact of different reconstruction parameters on image quality and spatial resolution was evaluated for 18F-FDG PET/CT scans acquired with a scanner of the newest generation. Methods: PET/CT scans of a Jaszczak phantom and a NEMA PET body phantom, filled with 18F-FDG, 68Ga-HCl and 64Cu-HCl, respectively, were performed on a Siemens Biograph Vision. Images were assessed using spatial resolution and image quality (Recovery Coefficients (RC), coefficient of variation within the background, Contrast Recovery Coefficient (CRC), Contrast-Noise-Ratio (CNR), and relative count error in lung insert). In a subsequent analysis, the scan of the NEMA PET body phantom filled with 18F-FDG was reconstructed applying different parameters (with/without the application of Point Spread Function (PSF), Time of Flight (ToF) or post-filtering; matrix size). Spatial resolution and quantitative image quality were compared between reconstructions. Results: We found that image quality was comparable between 18F-FDG and 64Cu-HCl PET/CT measurements featuring similar maximal endpoint energy. In comparison, RC, CRC and CNR were worse in 68Ga-HCl data, despite similar count rates. Spatial resolution was up to 18 % worse in 68Ga-HCl compared to 18F-FDG images. Post-filtering of 18F-FDG acquisitions changed image quality the most and reduced spatial resolution by 52 % if a Gaussian filter with 5 mm FWHM was applied. ToF measurements especially improved the recovery of the smallest lesion (RCmean = 1.07 compared to 0.65 without ToF) and improved spatial resolution by 29 %.Conclusions: The positron energy of PET nuclides influences spatial resolution and image quality of digital PET/CT scans. Image quality of 68Ga-HCl PET/CT images was worse compared to 18F-FDG and 64Cu-HCl, respectively, despite similar count rates. Reconstruction parameters have a high impact on image quality and spatial resolution and should be considered when comparing images of different scanners or centers.


2021 ◽  
Vol 1 (1) ◽  
pp. 26-30
Author(s):  
Dito Andi Rukmana ◽  
◽  
Veronika Saron Kamantuh ◽  
Bambang Dwinanto ◽  
Lutfiana Desy Saputri

The eye is one of the sensitive organs that need attention in the head CT-Scan. This study aims to reduce the effective eye dose on a head CT-Scan using ODM (Organ Dose Modulation) software and use eyeshield on the phantom. The study was conducted using a CT-Scan tool GE Revolution Evo 128 Slice. The research method was carried out by placing three pairs of eye TLDs (Hp3 Dosimeters) on the phantom for the three examination configurations, CT-Scan standard (routine) examinations, examinations using ODM software, and examinations using ODM software and eyeshield. The estimated effective dose calculation based on TLD reading for the eye lens on a standard CT-Scan (routine) is 1.29 mSv. Examination with ODM software is 1.03 mSv. Examination with ODM software and eyeshield of 0.9 mSv. Based on the results obtained, a head CT-Scan with ODM software can reduce the dose by 20% from a routine head CT-Scan, and if added with an eyeshield, it can reduce the dose by 30%. The quality of the image produced by implementing ODM software, SNR value decreased from 39 to 35 in the anterior phantom, central and posterior parts remained. However, the change in SNR value is not significant, so it does not change the image quality. Furthermore, the addition of eyeshield does not alter the SNR value, which means that the addition eyeshield does not cause artifacts that affect image quality. Using ODM and eyeshield software is indeed a little more complicated than a routine head CT-Scan. Still, the benefits obtained are pretty significant, reducing the effective dose received by the eye without reducing image quality.


2013 ◽  
Vol 109 (3) ◽  
pp. 404-408 ◽  
Author(s):  
Matthijs F. Kruis ◽  
Jeroen B. van de Kamer ◽  
Jan-Jakob Sonke ◽  
Edwin P.M. Jansen ◽  
Marcel van Herk

Sign in / Sign up

Export Citation Format

Share Document