scholarly journals Carbon fiber–reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging

Author(s):  
Theresa Krätzig ◽  
Klaus C. Mende ◽  
Malte Mohme ◽  
Helge Kniep ◽  
Marc Dreimann ◽  
...  

Abstract Artifacts in computed tomography (CT) and magnetic resonance imaging (MRI) due to titanium implants in spine surgery are known to cause difficulties in follow-up imaging, radiation planning, and precise dose delivery in patients with spinal tumors. Carbon fiber–reinforced polyetheretherketon (CFRP) implants aim to reduce these artifacts. Our aim was to analyze susceptibility artifacts of these implants using a standardized in vitro model. Titanium and CFRP screw-rod phantoms were embedded in 3% agarose gel. Phantoms were scanned with Siemens Somatom AS Open and 3.0-T Siemens Skyra scanners. Regions of interest (ROIs) were plotted and analyzed for CT and MRI at clinically relevant localizations. CT voxel–based imaging analysis showed a significant difference of artifact intensity and central overlay between titanium and CFRP phantoms. For the virtual regions of the spinal canal, titanium implants (ti) presented − 30.7 HU vs. 33.4 HU mean for CFRP (p < 0.001), at the posterior margin of the vertebral body 68.9 HU (ti) vs. 59.8 HU (CFRP) (p < 0.001) and at the anterior part of the vertebral body 201.2 HU (ti) vs. 70.4 HU (CFRP) (p < 0.001), respectively. MRI data was only visually interpreted due to the low sample size and lack of an objective measuring system as Hounsfield units in CT. CT imaging of the phantom with typical implant configuration for thoracic stabilization could demonstrate a significant artifact reduction in CFRP implants compared with titanium implants for evaluation of index structures. Radiolucency with less artifacts provides a better interpretation of follow-up imaging, radiation planning, and more precise dose delivery.

2021 ◽  
Vol 50 (5) ◽  
pp. E13
Author(s):  
Matthew T. Neal ◽  
Alexandra E. Richards ◽  
Kara L. Curley ◽  
Naresh P. Patel ◽  
Jonathan B. Ashman ◽  
...  

OBJECTIVE The authors aimed to demonstrate the feasibility and advantages of carbon fiber–reinforced PEEK (CFRP) composite implants in patients with both primary and secondary osseous spinal tumors. METHODS Twenty-eight spinal tumor patients who underwent fixation with CFRP hardware were retrospectively identified in a Spine Tumor Quality Database at a single institution. Demographic, procedural, and follow-up data were retrospectively collected. RESULTS The study population included 14 females and 14 males with a mean age of 60 years (range 30–86 years). Five patients had primary bone tumors, and the remaining patients had metastatic tumors. Breast cancer was the most common metastatic tumor. The most common presenting symptom was axial spine pain (25 patients, 89%), and the most common Spine Instability Neoplastic Score was 7 (range 6–14). Two patients in this series had anterior cervical procedures. The remaining patients underwent posterior thoracolumbar fixation. The average fusion length included 4.6 vertebral segments (range 3–8). The mean clinical follow-up time with surgical or oncology teams was 6.5 months (range 1–23 months), and the mean interval for last follow-up imaging (CT or MRI) was 6.5 months (range 1–22 months). Eighteen patients received postoperative radiation at the authors’ institution (16 with photon therapy, 2 with proton therapy). Eleven of the patients (39%) in this series died. At the last clinical follow-up, 26 patients (93%) had stable or improved neurological function compared with their preoperative status. At the last imaging follow-up, local disease control was observed in 25 patients (89%). Two patients required reoperation in the immediate postoperative period, one for surgical site infection and the other for compressive epidural hematoma. One patient was noted to have lucencies around the most cephalad screws 3 months after surgery. No hardware fracture or malfunction occurred intraoperatively. No patients required delayed surgery for hardware loosening, fracture, or other failure. Early tumor recurrence was detected in 3 patients. Early detection was attributed to the imaging characteristics of the CFRP hardware. CONCLUSIONS CFRP spinal implants appear to be safe and comparable to conventional titanium implants in terms of functionality. The imaging characteristics of CFRP hardware facilitate radiation planning and assessment of surveillance imaging. CFRP hardware may enhance safety and efficacy, particularly with particle therapy dosimetry. Larger patient populations with longer-term follow-up are needed to confirm the various valuable aspects of CFRP spinal implants.


2017 ◽  
Vol 105 ◽  
pp. 294-301 ◽  
Author(s):  
Florian Ringel ◽  
Yu-Mi Ryang ◽  
Jan S. Kirschke ◽  
Birgit S. Müller ◽  
Jan J. Wilkens ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ronja A. Schierjott ◽  
Alexander Giurea ◽  
Hans-Joachim Neuhaus ◽  
Jens Schwiesau ◽  
Andreas M. Pfaff ◽  
...  

Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n=3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.


2016 ◽  
Vol 2 (1) ◽  
pp. 569-572 ◽  
Author(s):  
Michael Banghard ◽  
Christian Freudigmann ◽  
Kamel Silmy ◽  
Alfred Stett ◽  
Volker Bucher

AbstractCarbon fiber reinforced polyetheretherketone (CFR-PEEK) has similar mechanical properties to human bone and is considered as the best alternative material to substitute titanium for spine cage implants. To compensate its poor osteogenic properties and limited bioinertness, CFR-PEEK was coated with a thin film of titanium. In the study, we investigated the biological response in vitro of titanium coated CFR-PEEK with different vacuum plasma pretreatments. The so modified surface revealed first hints for a good cell response by excellent cell adhesion and morphology of human osteoblast – like cells MG 63 (ATXX:’CRL-1427). Thus, the findings show that surface roughness of CFR-PEEK material has a profound effect on the biological activity via vacuum plasma treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Florian A. Huber ◽  
Kai Sprengel ◽  
Lydia Müller ◽  
Laura C. Graf ◽  
Georg Osterhoff ◽  
...  

Abstract Background CT artifacts induced by orthopedic implants can limit image quality and diagnostic yield. As a number of different strategies to reduce artifact extent exist, the aim of this study was to systematically compare ex vivo the impact of different CT metal artifact reduction (MAR) strategies on spine implants made of either standard titanium or carbon-fiber-reinforced-polyetheretherketone (CFR-PEEK). Methods Spine surgeons fluoroscopically-guided prepared six sheep spine cadavers with pedicle screws and rods of either titanium or CFR-PEEK. Samples were subjected to single- and dual-energy (DE) CT-imaging. Different tube voltages (80, DE mixed, 120 and tin-filtered 150 kVp) at comparable radiation dose and iterative reconstruction versus monoenergetic extrapolation (ME) techniques were compared. Also, the influence of image reconstruction kernels (soft vs. bone tissue) was investigated. Qualitative (Likert scores) and quantitative parameters (attenuation changes induced by implant artifact, implant diameter and image noise) were evaluated by two independent radiologists. Artifact degree of different MAR-strategies and implant materials were compared by multiple ANOVA analysis. Results CFR-PEEK implants induced markedly less artifacts than standard titanium implants (p < .001). This effect was substantially larger than any other tested MAR technique. Reconstruction algorithms had small impact in CFR-PEEK implants and differed significantly in MAR efficiency (p < .001) with best MAR performance for DECT ME 130 keV (bone kernel). Significant differences in image noise between reconstruction kernels were seen (p < .001) with minor impact on artifact degree. Conclusions CFR-PEEK spine implants induce significantly less artifacts than standard titanium compositions with higher MAR efficiency than any alternate scanning or image reconstruction strategy. DECT ME 130 keV image reconstructions showed least metal artifacts. Reconstruction kernels primarily modulate image noise with minor impact on artifact degree.


Sign in / Sign up

Export Citation Format

Share Document