Effects of evolutionary changes in prey use on the relationship between food web complexity and stability

2010 ◽  
Vol 53 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Wakako Yamaguchi ◽  
Michio Kondoh ◽  
Masakado Kawata
2012 ◽  
Vol 367 (1604) ◽  
pp. 2814-2827 ◽  
Author(s):  
Kevin D. Lafferty

Past models have suggested host–parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of free-living species diversity. Food-web complexity and the ordering of extinctions altered these relationships in unpredictable ways. Each disassembly of a food web resulted in a unique relationship between parasite richness and the richness of free-living species, because the extinction trajectory of parasites was sensitive to the order of extinctions of free-living species. However, the average of many disassemblies tended to approximate an analytical model. Parasites of specialist hosts and hosts higher on food chains were more likely to go extinct in food-web models. Furthermore, correlated extinctions between hosts and parasites (e.g. if parasites share a host with a specialist predator) led to steeper declines in parasite richness with biodiversity loss. In empirical food webs with random removals of free-living species, the relationship between free-living species richness and parasite richness was, on average, quasi-linear, suggesting biodiversity loss reduces parasite diversity more than previously thought.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ina Schaefer ◽  
Tancredi Caruso

Abstract The early evolution of ecosystems in Palaeozoic soils remains poorly understood because the fossil record is sparse, despite the preservation of soil microarthropods already from the Early Devonian (~410 Mya). The soil food web plays a key role in the functioning of ecosystems and its organisms currently express traits that have evolved over 400 my. Here, we conducted a phylogenetic trait analysis of a major soil animal group (Oribatida) to reveal the deep time story of the soil food web. We conclude that this group, central to the trophic structure of the soil food web, diversified in the early Paleozoic and resulted in functionally complex food webs by the late Devonian. The evolution of body size, form, and an astonishing trophic diversity demonstrates that the soil food web was as structured as current food webs already in the Devonian, facilitating the establishment of higher plants in the late Paleozoic.


2016 ◽  
Vol 113 (8) ◽  
pp. 2128-2133 ◽  
Author(s):  
Matthew A. Barbour ◽  
Miguel A. Fortuna ◽  
Jordi Bascompte ◽  
Joshua R. Nicholson ◽  
Riitta Julkunen-Tiitto ◽  
...  

Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence.


2013 ◽  
Vol 58 (6) ◽  
pp. 2158-2170 ◽  
Author(s):  
Stephanie M. Parker ◽  
Alexander D. Huryn

Sign in / Sign up

Export Citation Format

Share Document