scholarly journals Oribatid mites show that soil food web complexity and close aboveground-belowground linkages emerged in the early Paleozoic

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ina Schaefer ◽  
Tancredi Caruso

Abstract The early evolution of ecosystems in Palaeozoic soils remains poorly understood because the fossil record is sparse, despite the preservation of soil microarthropods already from the Early Devonian (~410 Mya). The soil food web plays a key role in the functioning of ecosystems and its organisms currently express traits that have evolved over 400 my. Here, we conducted a phylogenetic trait analysis of a major soil animal group (Oribatida) to reveal the deep time story of the soil food web. We conclude that this group, central to the trophic structure of the soil food web, diversified in the early Paleozoic and resulted in functionally complex food webs by the late Devonian. The evolution of body size, form, and an astonishing trophic diversity demonstrates that the soil food web was as structured as current food webs already in the Devonian, facilitating the establishment of higher plants in the late Paleozoic.

2020 ◽  
Author(s):  
Shuo Jiao ◽  
Yahai Lu ◽  
Gehong Wei

Abstract Background: Belowground biodiversity supports multiple ecosystem functions and services that humans rely on. However, there is a dearth of studies conducted on a large spatial scale on the topic in intensely managed agricultural ecosystems. Existing studies have overlooked the fact that the functional diversity in other trophic groups within a food web could influence function of an individual in another trophic group. Here, we report significant and positive relationships between soil biodiversity (archaea, bacteria, fungi, protists, and invertebrates) and multiple ecosystem functions (nutrient provisioning, element cycling, and reduced pathogenicity potential) in 228 agricultural fields. Results: The relationships were influenced by (I) the types of organisms with significant relationships in archaea, bacteria, and fungi and not in protists and invertebrates, and (II) the connectedness of dominant phylotypes across soil food webs, which generate different ecological clusters within soil networks to maintain multiple functions. In addition, we highlight the role of soil food web complexity, reflected by ecological networks comprising diverse organisms, which promote the multiple functions and enhance the link between soil biodiversity and ecosystem functions. Conclusions: Overall, our results represent a significant advance in forecasting the impacts of belowground biodiversity within food webs on ecosystem functions in agricultural systems, and suggest that soil biodiversity, particularly soil food web complexity, should not be overlooked, but rather considered a key factor and integrated into policy and management activities aimed at enhancing and maintaining ecosystem productivity, stability, and sustainability under land-use intensification.


2007 ◽  
Vol 274 (1618) ◽  
pp. 1617-1624 ◽  
Author(s):  
Michio Kondoh

The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of prey–predator dynamics, such studies assumed a limited and relatively simpler variation in the food-web structure. Here, using mathematical models, I report that food-web flexibility arising from prey anti-predator defence enhances community-level stability (community persistence and robustness) in more complex systems and even changes the complexity–stability relationship. The model analysis shows that adaptive predator-specific defence enhances community-level stability under a wide range of food-web complexity levels and topologies, while generalized defence does not. Furthermore, while increasing food-web complexity has minor or negative effects on community-level stability in the absence of defence adaptation, or in the presence of generalized defence, in the presence of predator-specific defence, the connectance–stability relationship may become unimodal. Increasing species richness, in contrast, always lowers community-level stability. The emergence of a positive connectance–stability relationship however necessitates food-web compartmentalization, high defence efficiency and low defence cost, suggesting that it only occurs under a restricted condition.


2019 ◽  
Author(s):  
Matthew A. Barbour ◽  
Christopher J. Greyson-Gaito ◽  
Arezoo Sootodeh ◽  
Brendan Locke ◽  
Jordi Bascompte

AbstractGlobal change is simplifying the structure of ecological networks; however, we are currently in a poor position to predict how these simplified communities will affect the evolutionary potential of remaining populations. Theory on adaptive landscapes provides a framework for predicting how selection constrains phenotypic evolution, but often treats the community context of evolving populations as a “black box”. Here, we integrate ecological networks and adaptive landscapes to examine how changes in food-web complexity shape evolutionary constraints. We conducted a field experiment that manipulated the diversity of insect parasitoids (food-web complexity) that were able to impose selection on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits. We found that more traits were under selection in simpler vs. more complex food webs. The adaptive landscape was more neutral in complex food webs because different parasitoid species impose different selection pressures, minimizing relative fitness differences among phenotypes. Our results suggest that phenotypic evolution becomes more constrained in simplified food webs. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change. “What escapes the eye, however, is a much more insidious kind of extinction: the extinction of ecological interactions.” Janzen (1974)


2021 ◽  
Author(s):  
Sara Correa-García ◽  
Vincenzo Corelli ◽  
Julien Tremblay ◽  
Jessica Ann Dozois ◽  
Eugenie Mukula ◽  
...  

The aim of this study was to determine whether the complexity of the animal soil food web (SFWC) is a significant factor influencing the soil microbial communities, the productivity of the willow, and the degradation rates of 100 mg kg-1 phenanthrene contamination. The SFWC treatment had eight levels: just the microbial community (BF), or the BF with nematodes (N), springtails (C), earthworms (E), CE, CN, EN, CEN. After eight weeks of growth, the height and biomass of willows were significantly affected by the SFWC, whereas the amount of phenanthrene degraded was not affected, reaching over 95% in all pots. SFWC affected the structure and the composition of the bacterial, archaeal and fungal communities, with significant effects of SFWC on the relative abundance of fungal genera such as Sphaerosporella, a known willow symbiont during phytoremediation, and bacterial phyla such as Actinobacteriota, containing many PAH degraders. These SFWC effects on microbial communities were not clearly reflected in the community structure and abundance of PAH degraders, even though some degraders related to the Actinobacteriota and the diversity of Gram-negative degraders were affected by the SFWC treatments. Overall, our results suggest that, under our experimental conditions, SFWC does not affect significantly willow phytoremediation outcomes.


2021 ◽  
Author(s):  
Anton M. Potapov

The belowground compartment of terrestrial ecosystems drives nutrient cycling, the decomposition and stabilisation of organic matter, and supports aboveground life. Belowground consumers create complex food webs that regulate functioning, ensure stability and support biodiversity both below and above ground. However, existing soil food-web reconstructions do not match recently accumulated empirical evidence and there is no comprehensive reproducible approach that accounts for the complex resource, size and spatial structure of food webs in soil. Here I build on generic food-web organization principles and use multifunctional classification of soil protists, invertebrates and vertebrates, to reconstruct "multichannel" food-web across size classes of soil-associated consumers. This reconstruction is based on overlying feeding preference, prey protection, size spectrum and spatial distribution matrices combined with biomasses of trophic guilds to infer weighted trophic interactions. I then use food-web reconstruction, together with assimilation efficiencies, to calculate energy fluxes assuming a steady-state energetic system. Based on energy fluxes, I describe a number of indicators, related to stability, biodiversity and multiple ecosystem-level functions such as herbivory, top-down control, translocation and transformation of organic matter. I illustrate the approach with an empirical example, comparing it with traditional resource-focused soil food-web reconstruction. The multichannel reconstruction can be used to assess trophic multifunctionality (analogous to ecosystem multifunctionality), i.e. simultaneous support of multiple trophic functions by the food-web, and compare it across communities and ecosystems spanning beyond the soil. With further validation and parametrization, my multichannel reconstruction approach provides an effective tool for understanding and analysing soil food webs. I believe that having this tool will inspire more people to comprehensively describe soil communities and belowground-aboveground interactions. Such studies will provide informative indicators for including consumers as active agents in biogeochemical models, not only locally but also on regional and global scales.


2020 ◽  
Vol 287 (1934) ◽  
pp. 20201500
Author(s):  
C. B. Woodson ◽  
J. R. Schramski ◽  
S. B. Joye

Marine ecosystems are generally expected to have bottom-heavy trophic structure (more plants than animals) due to size-based constraints arising from increased metabolic requirements and inefficient energy transfer. However, size-based (allometric) approaches are often limited to confined trophic-level windows where energy transfer is predicted by size alone and are constrained to a balance between bottom-up and top-down control at steady state. In real food webs, energy flow is more complex and imbalances in top-down and bottom-up processes can also shape trophic structure. We expand the size-based theory to account for complex food webs and show that moderate levels of food web connectance allow for inverted trophic structure more often than predicted, especially in marine ecosystems. Trophic structure inversion occurs due to the incorporation of complex energy pathways and top-down effects on ecosystems. Our results suggest that marine ecosystems should be top-heavy, and observed bottom-heavy trophic structure may be a result of human defaunation of the ocean that has been more extreme than presently recognized.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 4 ◽  
Author(s):  
Paul Kardol ◽  
Jonathan R. De Long

There are great concerns about the impacts of soil biodiversity loss on ecosystem functions and services such as nutrient cycling, food production, and carbon storage. A diverse community of soil organisms that together comprise a complex food web mediates such ecosystem functions and services. Recent advances have shed light on the key drivers of soil food web structure, but a conceptual integration is lacking. Here, we explore how human-induced changes in plant community composition influence soil food webs. We present a framework describing the mechanistic underpinnings of how shifts in plant litter and root traits and microclimatic variables impact on the diversity, structure, and function of the soil food web. We then illustrate our framework by discussing how shifts in plant communities resulting from land-use change, climatic change, and species invasions affect soil food web structure and functioning. We argue that unravelling the mechanistic links between plant community trait composition and soil food webs is essential to understanding the cascading effects of anthropogenic shifts in plant communities on ecosystem functions and services.


2011 ◽  
Vol 278 (1720) ◽  
pp. 2946-2953 ◽  
Author(s):  
Vesna Gagic ◽  
Teja Tscharntke ◽  
Carsten F. Dormann ◽  
Bernd Gruber ◽  
Anne Wilstermann ◽  
...  

Decline in landscape complexity owing to agricultural intensification may affect biodiversity, food web complexity and associated ecological processes such as biological control, but such relationships are poorly understood. Here, we analysed food webs of cereal aphids, their primary parasitoids and hyperparasitoids in 18 agricultural landscapes differing in structural complexity (42–93% arable land). Despite little variation in the richness of each trophic group, we found considerable changes in trophic link properties across the landscape complexity gradient. Unexpectedly, aphid–parasitoid food webs exhibited a lower complexity (lower linkage density, interaction diversity and generality) in structurally complex landscapes, which was related to the dominance of one aphid species in complex landscapes. Nevertheless, primary parasitism, as well as hyperparasitism, was higher in complex landscapes, with primary parasitism reaching levels for potentially successful biological control. In conclusion, landscape complexity appeared to foster higher parasitism rates, but simpler food webs, thereby casting doubt on the general importance of food web complexity for ecosystem functioning.


Nematology ◽  
2006 ◽  
Vol 8 (5) ◽  
pp. 703-715 ◽  
Author(s):  
Sara Sánchez-Moreno ◽  
Hideomi Minoshima ◽  
Howard Ferris ◽  
Louise E. Jackson

Abstract The purported benefits of conservation tillage and continuous cropping in agricultural systems include enhancement of soil ecosystem functions to improve nutrient availability to crops and soil C storage. Studies relating soil management to community structure allow the development of bioindicators and the assessment of the consequences of management practices on the soil food web. During one year (December 2003-December 2004), we studied the influence of continuous cropping (CC), intermittent fallow (F), standard tillage (ST) and no tillage (NT) on the nematode assemblage and the soil food web in a legume-vegetable rotation system in California. The most intensive systems included four crops during the study period. Tillage practices and cropping pattern strongly influenced nematode faunal composition, and the soil food web, at different soil depths. Management effects on nematode taxa depended on their position along the coloniser-persister (cp) scale and on their trophic roles. At the last sampling date (December 2004), Mesorhabditis and Acrobeloides were positively associated with NH+4, while Panagrolaimus and Plectus were negatively correlated with certain phospholipid fatty acids (PLFA). Microbial-feeders were in general associated with both bacterial and fungal PLFA, microbial biomass C (MBC) by chloroform fumigation-extraction, total C and N, NH+4 and NO−3, and were most abundant in the surface soil of the NTCC treatment. Fungal-feeders were more closely related to PLFA markers of fungi than to ergosterol, a purported fungal sterol. Discolaimus, Prionchulus, Mylonchulus and Aporcelaimidae, in contrast, were associated with intermittent fallow and deeper soil layers. The organisms in the higher levels of the soil food web did not respond to the continuous input of C in the soil and a long recovery period may be required for appropriate taxa to be reintroduced and to increase. At the end of the experiment, each treatment supported quite different nematode assemblages and soil food webs.


Sign in / Sign up

Export Citation Format

Share Document