Recycling of industrial waste material of fly ash cenosphere for the treatment of car wash water effluent

Author(s):  
M. Priya ◽  
J. Jeyanthi ◽  
G. Thiruvenkatamani
2018 ◽  
Vol 134 ◽  
pp. 151-163 ◽  
Author(s):  
Pritom J. Bora ◽  
Mayuri Porwal ◽  
K.J. Vinoy ◽  
Kishore ◽  
Praveen C. Ramamurthy ◽  
...  

2022 ◽  
Vol 1212 (1) ◽  
pp. 012036
Author(s):  
N Chairunnisa ◽  
H Ruzhanah ◽  
Hairida ◽  
L.S Daniel

Abstract The success of preplaced aggregate concrete technology depends on two main factors which are potential grout and coarse aggregate. This research was conducted experimentally to determine the effect of using two different fly ash sources as an alternative for the partial replacement of cement and several size and shapes of coarse aggregate on the compressive and tensile strength of PAC specimens. This involved the use of seven concrete mixes with a low water-cement ratio of 0.4 and cement to sand ratio of 1:0.75 to produce standard cylinder specimens of concrete containing rounded and crush aggregate. Moreover, fly ash was added at a dosage of 5% and 10% of cement weight while three shapes and sizes of a rounded and crushed aggregate at 20 mm, 30 mm, and a mixture of the two were also applied. The results showed the compressive strength of specimens with different sizes or a mix of rounded aggregate in PAC exhibited a similar performance with 30 mm of crushed coarse aggregate. Furthermore, the specimen with a higher content of calcium fly ash demonstrated a more rapid strength at an early age of seven days than those with lower content. Therefore, the partial replacement of cement with industrial waste material in the form of fly ash in preplaced aggregate concrete has the ability to save up to 10% of cement and also produce certain environmental benefits.


Author(s):  
Pritom J. Bora ◽  
K. J. Vinoy ◽  
Kishore ◽  
Praveen C. Ramamurthy ◽  
Giridhar Madras

2014 ◽  
Vol 3 (3) ◽  
pp. 25-33
Author(s):  
Jagmeet Singh ◽  
◽  
Jaspal Singh ◽  
Manpreet Kaur ◽  
◽  
...  
Keyword(s):  
Fly Ash ◽  

2021 ◽  
Vol 10 (1) ◽  
pp. 157-168
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Jun Ji ◽  
Dongsheng He ◽  
...  

Abstract The feasibility of industrial waste fly ash as an alternative fluxing agent for silica in carbothermal reduction of medium-low-grade phosphate ore was studied in this paper. With a series of single-factor experiments, the reduction rate of phosphate rock under different reaction temperature, reaction time, particle size, carbon excess coefficient, and silicon–calcium molar ratio was investigated with silica and fly ash as fluxing agents. Higher reduction rates were obtained with fly ash fluxing instead of silica. The optimal conditions were derived as: reaction temperature 1,300°C, reaction time 75 min, particle size 48–75 µm, carbon excess coefficient 1.2, and silicon–calcium molar ratio 1.2. The optimized process condition was verified with other two different phosphate rocks and it was proved universally. The apparent kinetics analyses demonstrated that the activation energy of fly ash fluxing is reduced by 31.57 kJ/mol as compared with that of silica. The mechanism of better fluxing effect by fly ash may be ascribed to the fact that the products formed within fly ash increase the amount of liquid phase in the reaction system and promote reduction reaction. Preliminary feasibility about the recycling of industrial waste fly ash in thermal phosphoric acid industry was elucidated in the paper.


Sign in / Sign up

Export Citation Format

Share Document