ferronickel slag
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 88)

H-INDEX

17
(FIVE YEARS 8)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1375
Author(s):  
Juan Yang ◽  
Xuqin Duan ◽  
Lingchuan Liu ◽  
Huifen Yang ◽  
Xiaocui Jiang

This paper provides a technical approach for efficiently recovering Mg from ferronickel slag to produce high-quality magnesium oxide (MgO) by using the sulfuric acid leaching method under atmospheric pressure. The leaching rate of magnesium is 84.97% after a typical one-step acid leaching process, which is because Mg in FNS mainly exists in the forsterite (Mg2SiO4) phase, which is chemically stable. In order to increase the leaching rate, a two-step acid leaching process was proposed in this work, and the overall leaching rate reached up to 95.82% under optimized conditions. The response surface methodology analysis for parameter optimization and Mg leaching rules revealed that temperature was the most critical factor affecting the Mg leaching rate when the sulfuric acid concentration was higher than 2 mol/L, followed by acid leaching time. Furthermore, interactive behavior also existed between the leaching temperature and leaching time. The leaching kinetics of magnesium from FNS followed a shrinkage-nuclear-reaction model with composite control, which were chemically controlled at lower temperatures and diffusion controlled at higher temperatures; the corresponding apparent activation energy was 19.57 kJ/mol. The leachate can be used to obtain spherical-like alkali magnesium carbonate particles with diameters of 5–10 μm at 97.62% purity. By using a further calcination process, the basic magnesium carbonate can be converted into a light magnesium oxide powder with a particle size of 2–5 μm (MgO content 94.85%), which can fulfill first-level quality standards for industrial magnesium oxide in China.


2021 ◽  
Vol 310 ◽  
pp. 125251
Author(s):  
Xuhong Liu ◽  
Shanghong Chen ◽  
Ai Qi ◽  
Wei Lin ◽  
Huanqiang Wu

2021 ◽  
Vol 313 ◽  
pp. 125505
Author(s):  
Jhutan Chandra Kuri ◽  
Prabir Kumar Sarker ◽  
Faiz Uddin Ahmed Shaikh

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5879
Author(s):  
Sung-Ho Bae ◽  
Jae-In Lee ◽  
Se-Jin Choi

Recently, interest in environmentally friendly development has increased worldwide, especially in the construction industry. In this study, blast furnace slag powder (BFSP) and mixed steel fine aggregates were applied to cement mortars to reduce the environmental damage caused by the extraction of natural aggregate and to increase the recycling rate of steel by-products in the construction industry. We investigated the fluidity, compressive strength, tensile strength, accelerated carbonation depth, and chloride ion penetration resistance of mortars with steel slag aggregate and their dependence on the presence or absence of BFSP. Because the recycling rate of ferronickel slag is low and causes environmental problems, we considered mortar samples with mixed fine aggregates containing blast furnace slag fine aggregate (BSA) and ferronickel slag fine aggregate (FSA). The results showed that the 7-day compressive strength of a sample containing both 25% BSA and 25% FSA was nearly 14.8% higher than that of the control sample. This trend is likely due to the high density and angular shape of steel slag particles. The 56-day compressive strength of the sample with BFSP and 50% FSA was approximately 64.9 MPa, which was higher than that of other samples with BFSP. In addition, the chloride ion penetrability test result indicates that the use of BFSP has a greater effect than the use of steel slag aggregate on the chloride ion penetration resistance of mortar. Thus, the substitute rate of steel slag as aggregate can be substantially enhanced if BFSP and steel slag aggregate are used in an appropriate combination.


Metalurgi ◽  
2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Wahyu Mayangsari ◽  
Agus Budi Prasetyo ◽  
Eni Febriana ◽  
Januar Irawan ◽  
Rudi Subagja ◽  
...  

Terak feronikel dihasilkan sebagai produk samping dari produksi feronikel. terak feronikel mempunyai potensi sebagai bahan baku beberapa komponen berharga karena komposisinya melalui proses bertahap. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh dari proses pemanggangan campuran terak feronikel dan Na2CO3 sebelum leaching air panas dan presipitasi untuk menghasilkan endapan silika. Proses pemanggangan terak feronikel dengan penambahan Na2CO3 telah dilakukan untuk pembentukan natrium silikat. Kemudian dilarutkan melalui proses pelindian menggunakan air panas 90 ° C selama 120 menit. Endapan silika didapatkan dengan proses presipitasi sodium silikat terlarut diikuti dengan pemeraman selama tiga hari. Berdasarkan hasilnya, pemanggangan menyebabkan perubahan komposisi yang mempengaruhi persen pelindian dan perolehan silika. Reaksi terjadi dari permukaan ke inti yang dibuktikan dengan pengecilan ukuran residu pelindian dari RAF nya. Natrium silikat dalam bentuk Na4SiO4  diketahui terlarut Ketika pelindian air dilakukan. Pengendapan dan pemeraman larutan natrium silikat telah menghasilkan endapan silika dengan ukuran partikel lebih dari 100 mm. pemanggangan pada 1000 ° C selama 240 menit menghasilkan perolehan silika tertinggi.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kuisheng Liu ◽  
Zhenguo Liu ◽  
Jianwei Sun

Blast furnace ferronickel slag (BFNS), currently an underutilized metallurgical residue, was investigated for use as a precursor for alkaline activation. Water glass solutions with various moduli (0.5, 1.0, 1.5 and 2.0) were used at the same water glass concentration of 10% to investigate the influence of the modulus on hydration and mechanical properties. The results show that the modulus has a certain impact on the hydration and mechanical strength development of alkali-activated BFNS. Increasing the modulus of water glass does not change the type of hydration product and the activity of the Mg-containing phases, but it decreases the amount of C2AS, the Ca/Si and Al/Si ratios of the (N,C)-A(M)-S-H gel. In addition, a high silicate modulus deteriorates the pore structure, which has an adverse effect on the development of compressive strength and splitting tensile strength.


Sign in / Sign up

Export Citation Format

Share Document