scholarly journals Toward Kinecting cognition by behaviour recognition-based deep learning and big data

Author(s):  
Majeed Soufian ◽  
Samia Nefti-Mezian ◽  
Jonathan Drake

Abstract The majority of older people wish to live independently at home as long as possible despite having a range of age-related conditions including cognitive impairment. To facilitate this, there has been an extensive focus on exploring the capability of new technologies with limited success. This paper investigates whether MS Kinect (a motion-based sensing 3-D scanner device) within the MiiHome (My Intelligent Home) project in conjunction with other sensory data, machine learning and big data techniques can assist in the diagnosis and prognosis of cognitive impairment and hence prolong independent living. A pool of Kinect devices and various sensors powered by minicomputers providing internet connectivity are being installed in up to 200 homes. This enables continuous remote monitoring of elderly residents living alone. Passive and off-the-shelf sensor technologies were chosen to implement data acquisition specifically from sources that are part of the fabric of the homes, so that no extra effort is required from the participants. Various constraints including environmental, geometrical and big data were identified and appropriately dealt with. A visualization tool (MAGID) was developed for validation and verification of numerous behavioural activities. Then, a subset of data, from twelve pensioners aged over 65 with age-related cognitive decline and frailty, were collected over a period of 6 months. These data were subjected to several machine learning algorithms (multilayer perceptron neural network, neuro-fuzzy and deep learning) for classification and to extract routine behavioural patterns. These patterns were then analysed further to ascertain any health-related information and their attributes. For the first time, important routine behaviour related to Activities of Daily Living (ADL) of elderly people with cognitive and physical decline has been learnt by machine learning techniques from selected sample data obtained by MS Kinect. Medically important behaviour, e.g. eating, walking, sitting, was best learnt by deep learning with accuracy of 99.30% during training stage and average error rate of 1.83% with maximum of 12.98% during the implementation phase. Observations obtained from the application of the above learnt behaviours are presented as trends over a period of time. These trends, supplemented by other sensory signals, have provided a clearer picture of physical (in)activities (including falls) of the pensioners. The calculated behavioural attributes related to key indicators of health events can be used to model the trajectory of health status related to cognitive decline in a home setting. These results, based on a small number of elderly residents over a short period of time, imply that within the results obtained from the MiiHome project, it is possible to find indicators of cognitive decline. However, further studies are needed for full clinical validation of these indications in conjunction with assessment of cognitive decline of the participants.

2021 ◽  
Vol 1 (3) ◽  
pp. 138-165
Author(s):  
Thomas Krause ◽  
Jyotsna Talreja Wassan ◽  
Paul Mc Kevitt ◽  
Haiying Wang ◽  
Huiru Zheng ◽  
...  

Metagenomics promises to provide new valuable insights into the role of microbiomes in eukaryotic hosts such as humans. Due to the decreasing costs for sequencing, public and private repositories for human metagenomic datasets are growing fast. Metagenomic datasets can contain terabytes of raw data, which is a challenge for data processing but also an opportunity for advanced machine learning methods like deep learning that require large datasets. However, in contrast to classical machine learning algorithms, the use of deep learning in metagenomics is still an exception. Regardless of the algorithms used, they are usually not applied to raw data but require several preprocessing steps. Performing this preprocessing and the actual analysis in an automated, reproducible, and scalable way is another challenge. This and other challenges can be addressed by adjusting known big data methods and architectures to the needs of microbiome analysis and DNA sequence processing. A conceptual architecture for the use of machine learning and big data on metagenomic data sets was recently presented and initially validated to analyze the rumen microbiome. The same architecture can be used for clinical purposes as is discussed in this paper.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


Author(s):  
Usha Moorthy ◽  
Usha Devi Gandhi

Big data is information management system through the integration of various traditional data techniques. Big data usually contains high volume of personal and authenticated information which makes privacy as a major concern. To provide security and effective processing of collected data various techniques are evolved. Machine Learning (ML) is considered as one of the data technology which handles one of the central and hidden parts of collected data. Same like ML algorithm Deep Learning (DL) algorithm learn program automatically from the data it is considered to enhance the performance and security of the collected massive data. This paper reviewed security issues in big data and evaluated the performance of ML and DL in a critical environment. At first, this paper reviewed about the ML and DL algorithm. Next, the study focuses towards issues and challenges of ML and their remedies. Following, the study continues to investigate DL concepts in big data. At last, the study figures out methods adopted in recent research trends and conclude with a future scope.


2017 ◽  
Vol 42 ◽  
pp. 186-192 ◽  
Author(s):  
Füsun Er ◽  
Pınar Iscen ◽  
Sevki Sahin ◽  
Nilgun Çinar ◽  
Sibel Karsidag ◽  
...  

2022 ◽  
pp. 655-677
Author(s):  
Usha Moorthy ◽  
Usha Devi Gandhi

Big data is information management system through the integration of various traditional data techniques. Big data usually contains high volume of personal and authenticated information which makes privacy as a major concern. To provide security and effective processing of collected data various techniques are evolved. Machine Learning (ML) is considered as one of the data technology which handles one of the central and hidden parts of collected data. Same like ML algorithm Deep Learning (DL) algorithm learn program automatically from the data it is considered to enhance the performance and security of the collected massive data. This paper reviewed security issues in big data and evaluated the performance of ML and DL in a critical environment. At first, this paper reviewed about the ML and DL algorithm. Next, the study focuses towards issues and challenges of ML and their remedies. Following, the study continues to investigate DL concepts in big data. At last, the study figures out methods adopted in recent research trends and conclude with a future scope.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 335
Author(s):  
R Anandan ◽  
Srikanth Bhyrapuneni ◽  
K Kalaivani ◽  
P Swaminathan

Big Data Analytics and Deep Learning are two immense purpose of meeting of data science. Big Data has ended up being major a tantamount number of affiliations both open and private have been gathering huge measures of room specific information, which can contain enduring information about issues, for instance, national cognizance, motorized security, coercion presentation, advancing, and healing informatics. Relationship, for instance, Microsoft and Google are researching wide volumes of data for business examination and decisions, influencing existing and future progression. Critical Learning figuring's isolate odd state, complex reflections as data outlines through another levelled learning practice. Complex reflections are learnt at a given level in setting of all around less asking for thoughts figured in the past level in the dynamic framework. An indispensable favoured perspective of Profound Learning is the examination and culture of beast measures of unconfirmed data, making it a fundamental contraption for Great Statistics Analytics where offensive data is, everything seen as, unlabelled and un-arranged. In the present examination, we investigate how Deep Learning can be used for keeping an eye out for some essential issues in Big Data Analytics, including removing complex cases from Big volumes of information, semantic asking for, information naming, smart data recovery, and streamlining discriminative errands .Deep learning using Machine Learning(ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the front line as of late mostly attributable to the advert of huge information. ML counts have never been remarkable ensured while tried by gigantic data. Gigantic data engages ML counts to uncover more fine-grained cases and make more advantageous and correct gauges than whenever in late memory with deep learning; on the other hand, it exhibits genuine challenges to deep learning in ML, for instance, show adaptability and appropriated enlisting. In this paper, we introduce a framework of Deep learning in ML on big data (DLiMLBiD) to guide the discussion of its opportunities and challenges. In this paper, different machine learning algorithms have been talked about. These calculations are utilized for different purposes like information mining, picture handling, prescient examination, and so forth to give some examples. The fundamental favourable position of utilizing machine learning is that, once a calculation realizes what to do with information, it can do its work consequently. In this paper we are providing the review of different Deep learning in text using Machine Learning and Big data methods.  


2018 ◽  
Vol 14 (2) ◽  
pp. 127-138
Author(s):  
Asif Banka ◽  
Roohie Mir

The advancements in modern day computing and architectures focus on harnessing parallelism and achieve high performance computing resulting in generation of massive amounts of data. The information produced needs to be represented and analyzed to address various challenges in technology and business domains. Radical expansion and integration of digital devices, networking, data storage and computation systems are generating more data than ever. Data sets are massive and complex, hence traditional learning methods fail to rescue the researchers and have in turn resulted in adoption of machine learning techniques to provide possible solutions to mine the information hidden in unseen data. Interestingly, deep learning finds its place in big data applications. One of major advantages of deep learning is that it is not human engineered. In this paper, we look at various machine learning algorithms that have already been applied to big data related problems and have shown promising results. We also look at deep learning as a rescue and solution to big data issues that are not efficiently addressed using traditional methods. Deep learning is finding its place in most applications where we come across critical and dominating 5Vs of big data and is expected to perform better.


Sign in / Sign up

Export Citation Format

Share Document