scholarly journals Analyzing Large Microbiome Datasets Using Machine Learning and Big Data

2021 ◽  
Vol 1 (3) ◽  
pp. 138-165
Author(s):  
Thomas Krause ◽  
Jyotsna Talreja Wassan ◽  
Paul Mc Kevitt ◽  
Haiying Wang ◽  
Huiru Zheng ◽  
...  

Metagenomics promises to provide new valuable insights into the role of microbiomes in eukaryotic hosts such as humans. Due to the decreasing costs for sequencing, public and private repositories for human metagenomic datasets are growing fast. Metagenomic datasets can contain terabytes of raw data, which is a challenge for data processing but also an opportunity for advanced machine learning methods like deep learning that require large datasets. However, in contrast to classical machine learning algorithms, the use of deep learning in metagenomics is still an exception. Regardless of the algorithms used, they are usually not applied to raw data but require several preprocessing steps. Performing this preprocessing and the actual analysis in an automated, reproducible, and scalable way is another challenge. This and other challenges can be addressed by adjusting known big data methods and architectures to the needs of microbiome analysis and DNA sequence processing. A conceptual architecture for the use of machine learning and big data on metagenomic data sets was recently presented and initially validated to analyze the rumen microbiome. The same architecture can be used for clinical purposes as is discussed in this paper.

2018 ◽  
Vol 14 (2) ◽  
pp. 127-138
Author(s):  
Asif Banka ◽  
Roohie Mir

The advancements in modern day computing and architectures focus on harnessing parallelism and achieve high performance computing resulting in generation of massive amounts of data. The information produced needs to be represented and analyzed to address various challenges in technology and business domains. Radical expansion and integration of digital devices, networking, data storage and computation systems are generating more data than ever. Data sets are massive and complex, hence traditional learning methods fail to rescue the researchers and have in turn resulted in adoption of machine learning techniques to provide possible solutions to mine the information hidden in unseen data. Interestingly, deep learning finds its place in big data applications. One of major advantages of deep learning is that it is not human engineered. In this paper, we look at various machine learning algorithms that have already been applied to big data related problems and have shown promising results. We also look at deep learning as a rescue and solution to big data issues that are not efficiently addressed using traditional methods. Deep learning is finding its place in most applications where we come across critical and dominating 5Vs of big data and is expected to perform better.


Author(s):  
Fernando Enrique Lopez Martinez ◽  
Edward Rolando Núñez-Valdez

IoT, big data, and artificial intelligence are currently three of the most relevant and trending pieces for innovation and predictive analysis in healthcare. Many healthcare organizations are already working on developing their own home-centric data collection networks and intelligent big data analytics systems based on machine-learning principles. The benefit of using IoT, big data, and artificial intelligence for community and population health is better health outcomes for the population and communities. The new generation of machine-learning algorithms can use large standardized data sets generated in healthcare to improve the effectiveness of public health interventions. A lot of these data come from sensors, devices, electronic health records (EHR), data generated by public health nurses, mobile data, social media, and the internet. This chapter shows a high-level implementation of a complete solution of IoT, big data, and machine learning implemented in the city of Cartagena, Colombia for hypertensive patients by using an eHealth sensor and Amazon Web Services components.


2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


2016 ◽  
Vol 24 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Diego Gachet Páez ◽  
Manuel de Buenaga Rodríguez ◽  
Enrique Puertas Sánz ◽  
María Teresa Villalba ◽  
Rafael Muñoz Gil

The aging population and economic crisis specially in developed countries have as a consequence the reduction in funds dedicated to health care; it is then desirable to optimize the costs of public and private healthcare systems, reducing the affluence of chronic and dependent people to care centers; promoting healthy lifestyle and activities can allow people to avoid chronic diseases as for example hypertension. In this article, we describe a system for promoting an active and healthy lifestyle for people and to recommend with guidelines and valuable information about their habits. The proposed system is being developed around the Big Data paradigm using bio-signal sensors and machine-learning algorithms for recommendations.


Author(s):  
Balasree K ◽  
Dharmarajan K

In rapid development of Big Data technology over the recent years, this paper discussing about the Machine Learning (ML) playing role that is based on methods and algorithms to Big Data Processing and Big Data Analytics. In evolutionary fields and computing fields of developments that both are complementing each other. Big Data: The rapid growth of such data solutions needed to be studied and provided to handle then to gain the knowledge from datasets and extracting values due to the data sets are very high in velocity and variety. The Big data analytics are involving and indicating the appropriate data storage and computational outline that enhanced by using Scalable Machine Learning Algorithms and Big Data Analytics then the analytics to reveal the massive amounts of hidden data’s and secret correlations. This type of Analytic information useful for organizations and companies to gain deeper knowledge, development and getting advantages over the competition. When using this Analytics we can predict the accurate implementation over the data. This paper presented about the detailed review of state-of-the-art developments and overview of advantages and challenges in Machine Learning Algorithms over big data analytics.


2019 ◽  
Vol 8 (4) ◽  
pp. 7356-7360

Data Analytics is a scientific as well as an engineering tool used to investigate the raw data to revamp the information to achieve knowledge. This is normally connected with obtaining knowledge from reliable information source and rapidity in information processing, and future prediction of the data analysis. Big Data analytics is strongly evolving with different features of volume, velocity and Vectors. Most of the organizations are now concentrating on analyzing information or raw data that are fascinated in deploying analytics to survive forthcoming issues and challenges. The prediction model or intelligent model is proposed in this research to apply machine learning algorithms in the data set. Then it is interpreted and to analyze the better forecast value of the study. The major objective of this research work is to find the optimum prediction from the medical data set using the machine learning techniques.


Author(s):  
Son Nguyen ◽  
Anthony Park

This chapter compares the performances of multiple Big Data techniques applied for time series forecasting and traditional time series models on three Big Data sets. The traditional time series models, Autoregressive Integrated Moving Average (ARIMA), and exponential smoothing models are used as the baseline models against Big Data analysis methods in the machine learning. These Big Data techniques include regression trees, Support Vector Machines (SVM), Multilayer Perceptrons (MLP), Recurrent Neural Networks (RNN), and long short-term memory neural networks (LSTM). Across three time series data sets used (unemployment rate, bike rentals, and transportation), this study finds that LSTM neural networks performed the best. In conclusion, this study points out that Big Data machine learning algorithms applied in time series can outperform traditional time series models. The computations in this work are done by Python, one of the most popular open-sourced platforms for data science and Big Data analysis.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


Author(s):  
Usha Moorthy ◽  
Usha Devi Gandhi

Big data is information management system through the integration of various traditional data techniques. Big data usually contains high volume of personal and authenticated information which makes privacy as a major concern. To provide security and effective processing of collected data various techniques are evolved. Machine Learning (ML) is considered as one of the data technology which handles one of the central and hidden parts of collected data. Same like ML algorithm Deep Learning (DL) algorithm learn program automatically from the data it is considered to enhance the performance and security of the collected massive data. This paper reviewed security issues in big data and evaluated the performance of ML and DL in a critical environment. At first, this paper reviewed about the ML and DL algorithm. Next, the study focuses towards issues and challenges of ML and their remedies. Following, the study continues to investigate DL concepts in big data. At last, the study figures out methods adopted in recent research trends and conclude with a future scope.


Sign in / Sign up

Export Citation Format

Share Document