scholarly journals Mine Water and the Environment: History Until Volume 40 and the New Cover Design

Author(s):  
Christian Wolkersdorfer
Keyword(s):  
2003 ◽  
Vol 11 (2) ◽  
pp. 245-252 ◽  
Author(s):  
Richard Coulton ◽  
Chris Bullen ◽  
John Dolan ◽  
Clive Hallett ◽  
Jim Wright ◽  
...  

2003 ◽  
Vol 11 (2) ◽  
pp. 191-198 ◽  
Author(s):  
David Banks ◽  
Helge Skarphagen ◽  
Robin Wiltshire ◽  
Chris Jessop

Kerntechnik ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. 101-107
Author(s):  
C. Wanke ◽  
S. Ritzel ◽  
R. Sachse ◽  
R. Michel

Author(s):  
A. Toporov ◽  
◽  
T. Kostenko ◽  
Y. Tiurin ◽  
O. Lysenko ◽  
...  
Keyword(s):  

2018 ◽  
Vol 10 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Gang Chen ◽  
Shiguang Xu ◽  
Chunxue Liu ◽  
Lei Lu ◽  
Liang Guo

Abstract Mine water inrush is one of the important factors threatening safe production in mines. The accurate understanding of the mine groundwater flow field can effectively reduce the hazards of mine water inrush. Numerical simulation is an important method to study the groundwater flow field. This paper numerically simulates the groundwater seepage field in the GaoSong ore field. In order to ensure the accuracy of the numerical model, the research team completed 3,724 field fissure measurements in the study area. The fracture measurement results were analyzed using the GEOFRAC method and the whole-area fracture network data were generated. On this basis, the rock mass permeability coefficient tensor of the aquifer in the study area was calculated. The tensor calculation results are used in the numerical model of groundwater flow. After calculation, the obtained numerical model can better represent the groundwater seepage field in the study area. In addition, we designed three different numerical models for calculation, mainly to explore the influence of the tensor assignment of permeability coefficient on the calculation results of water yield of the mine. The results showed that irrational fathom tensor assignment would cause a significant deviation in calculation results.


1996 ◽  
Vol 34 (10) ◽  
pp. 141-149 ◽  
Author(s):  
J. P. Maree ◽  
G. J. van Tonder ◽  
P. Millard ◽  
T. C. Erasmus

Traditionally acid mine water is neutralised with lime (Ca(OH)2). Limestone (CaCO3) is a cheaper alternative for such applications. This paper describes an investigation aimed at demonstrating that underground mine water can be neutralised with limestone in a fluidised-bed. The contact time required between the limestone and the acid water, chemical composition of water before and after treatment, and economic feasibility of the fluidised bed neutralisation process are determined. A pilot plant with a capacity of 10k1/h was operated continuously underground in a gold mine. The underground water could be neutralised effectively using the limestone process. The pH of the water was increased from less than 3 to more than 7, the alkalinity of the treated water was greater than 120 mg/l (as CaCO3) and the contact time required between mine water and limestone was less than 10 min (the exact contact time depends on the limestone surface area). Chemical savings of 56.4% can be achieved compared to neutralisation with lime.


2017 ◽  
Vol 77 ◽  
pp. 111-145
Author(s):  
Jae Shin Lee ◽  
◽  
Oh-Hyun Kwon ◽  

1989 ◽  
Vol 19 (3) ◽  
pp. 237-263 ◽  
Author(s):  
Marcia H. Bates ◽  
John N. Veenstra ◽  
John Barber ◽  
Raju Bernard ◽  
Julie Karleskint ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document