scholarly journals Classical and Sobolev orthogonality of the nonclassical Jacobi polynomials with parameters $$\alpha =\beta =-1$$

2012 ◽  
Vol 193 (2) ◽  
pp. 431-455 ◽  
Author(s):  
Andrea Bruder ◽  
Lance L. Littlejohn
Author(s):  
Jesus Sanchez-Dehesa ◽  
Nahual Sobrino

The Jacobi polynomials $\hat{P}_n^{(\alpha,\beta)}(x)$ conform the canonical family of hypergeometric orthogonal polynomials (HOPs) with the two-parameter weight function $(1-x)^\alpha (1+x)^\beta, \alpha,\beta>-1,$ on the interval $[-1,+1]$. The spreading of its associated probability density (i.e., the Rakhmanov density) over the orthogonality support has been quantified, beyond the dispersion measures (moments around the origin, variance), by the algebraic $\mathfrak{L}_{q}$-norms (Shannon and R\’enyi entropies) and the monotonic complexity-like measures of Cram\’er-Rao, Fisher-Shannon and LMC (L\’opez-Ruiz, Mancini and Calbet) types. These quantities, however, have been often determined in an analytically highbrow, non-handy way; specially when the degree or the parameters $(\alpha,\beta)$ are large. In this work, we determine in a simple, compact form the leading term of the entropic and complexity-like properties of the Jacobi polynomials in the two extreme situations: ($n\rightarrow \infty$; fixed $\alpha,\beta$) and ($\alpha\rightarrow \infty$; fixed $n,\beta$). These two asymptotics are relevant \textit{per se} and because they control the physical entropy and complexity measures of the high energy (Rydberg) and high dimensional (pseudoclassical) states of many exactly, conditional exactly and quasi-exactly solvable quantum-mechanical potentials which model numerous atomic and molecular systems.


Author(s):  
Stefan Kahler

AbstractIn the theory of orthogonal polynomials, as well as in its intersection with harmonic analysis, it is an important problem to decide whether a given orthogonal polynomial sequence $$(P_n(x))_{n\in \mathbb {N}_0}$$ ( P n ( x ) ) n ∈ N 0 satisfies nonnegative linearization of products, i.e., the product of any two $$P_m(x),P_n(x)$$ P m ( x ) , P n ( x ) is a conical combination of the polynomials $$P_{|m-n|}(x),\ldots ,P_{m+n}(x)$$ P | m - n | ( x ) , … , P m + n ( x ) . Since the coefficients in the arising expansions are often of cumbersome structure or not explicitly available, such considerations are generally very nontrivial. Gasper (Can J Math 22:582–593, 1970) was able to determine the set V of all pairs $$(\alpha ,\beta )\in (-1,\infty )^2$$ ( α , β ) ∈ ( - 1 , ∞ ) 2 for which the corresponding Jacobi polynomials $$(R_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( R n ( α , β ) ( x ) ) n ∈ N 0 , normalized by $$R_n^{(\alpha ,\beta )}(1)\equiv 1$$ R n ( α , β ) ( 1 ) ≡ 1 , satisfy nonnegative linearization of products. Szwarc (Inzell Lectures on Orthogonal Polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, vol 2, Nova Sci. Publ., Hauppauge, NY pp 103–139, 2005) asked to solve the analogous problem for the generalized Chebyshev polynomials $$(T_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( T n ( α , β ) ( x ) ) n ∈ N 0 , which are the quadratic transformations of the Jacobi polynomials and orthogonal w.r.t. the measure $$(1-x^2)^{\alpha }|x|^{2\beta +1}\chi _{(-1,1)}(x)\,\mathrm {d}x$$ ( 1 - x 2 ) α | x | 2 β + 1 χ ( - 1 , 1 ) ( x ) d x . In this paper, we give the solution and show that $$(T_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( T n ( α , β ) ( x ) ) n ∈ N 0 satisfies nonnegative linearization of products if and only if $$(\alpha ,\beta )\in V$$ ( α , β ) ∈ V , so the generalized Chebyshev polynomials share this property with the Jacobi polynomials. Moreover, we reconsider the Jacobi polynomials themselves, simplify Gasper’s original proof and characterize strict positivity of the linearization coefficients. Our results can also be regarded as sharpenings of Gasper’s one.


2004 ◽  
Vol 2004 (28) ◽  
pp. 1455-1462 ◽  
Author(s):  
Sarjoo Prasad Yadav

LetXrepresent either a spaceC[−1,1]orLα,βp(w),1≤p<∞, of functions on[−1,1]. It is well known thatXare Banach spaces under the sup and thep-norms, respectively. We prove that there exist the best possible normalized Banach subspacesXα,βkofXsuch that the system of Jacobi polynomials is densely spread on these, or, in other words, eachf∈Xα,βkcan be represented by a linear combination of Jacobi polynomials to any degree of accuracy. Explicit representation forf∈Xα,βkhas been given.


2011 ◽  
Vol 61 (3-4) ◽  
pp. 283-313 ◽  
Author(s):  
Andrea Bruder ◽  
L. L. Littlejohn

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 411-416 ◽  
Author(s):  
Carina Kolot ◽  
Ana Rodriguez-Mateos ◽  
Rodrigo Feliciano ◽  
Katharina Bottermann ◽  
Wilhelm Stahl

Abstract. Chalcones are a type of flavonoids characterized by an α-β unsaturated structural element which may react with thiol groups to activate pathways such as the Nrf2-Keap-1 system. Naringenin chalcone is abundant in the diet but little is known about its bioavailability. In this work, the bioavailability of naringenin chalcone from tomatoes was investigated in a group of healthy men (n=10). After ingestion of 600 grams of tomatoes providing a single dose of 17.3 mg naringenin chalcone, 0.2 mg of naringenin, and 195 mg naringin plasma levels of free and conjugated naringenin and naringenin chalcone (glucuronide and sulfate) were analyzed by UHPLC-QTOF-MS at 0.5, 1, 3, and 6 h post-consumption. Plasma levels of conjugated naringenin increased to about 12 nmol/L with a maximum at about 3 h. Concentrations of free naringenin hardly elevated above baseline. Plasma levels of free and conjugated naringenin chalcone significantly increased. A maximum of the conjugated chalcone was reached at about 3 h after ingestion with an average concentration of about 0.5 nmol/L. No free chalcone was detectable at baseline but low amounts of the unconjugated compound could be detected with an average maximum of 0.8 nmol/L at about 1 h after ingestion. The data demonstrate that naringenin chalcone is bioavailable in humans from cherry tomatoes as a dietary source. However, availability is poor and intramolecular cyclisation as well as extended metabolism likely contribute to the inactivation of the reactive alpha-beta unsaturated reactive center as well as the excretion of the biologically active molecule, respectively.


Sign in / Sign up

Export Citation Format

Share Document