Phase Transformations in Ti-7w/oMo-3w/oMe Alloy

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.

2021 ◽  
Vol 1026 ◽  
pp. 84-92
Author(s):  
Tao Qian Cheng ◽  
Zhi Hui Li

Al-Zn-Mg-Cu alloy have been widely used in aerospace industry. However, there is still a lack of research on thermal stability of Al-Zn-Mg-Cu alloy products. In the present work, an Al-Zn-Mg-Cu alloy with T79 and T74 states was placed in the corresponding environment for thermal exposure experiments. Performance was measured by tensile strength, hardness and electrical conductivity. In this paper, precipitation observation was analyzed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The precipitations of T79 state alloy were GPⅡ zone, η' phase and η phase while the ultimate tensile strength, hardness and electrical conductivity were 571MPa, 188.2HV and 22.2MS×m-1, respectively. The mechanical property of T79 state alloy decreased to 530MPa and 168.5HV after thermal exposure. The diameter of precipitate increased and the precipitations become η' and η phase at the same time. During the entire thermal exposure, T74 state alloy had the same mechanical property trend as T79 state alloy. The precipitate diameter also increased while the types of precipitate did not change under thermal exposure. The size of precipitates affected the choice of dislocation passing through the particles to affect the mechanical properties.


Author(s):  
M. Kirn ◽  
M. Rühle ◽  
H. Schmid ◽  
L.J. Gauckler

It is expected that Si-Al-O-N alloys are important high temperature construction materials. The phase diagrams for Si-Al-O-N alloys were studied systematically mainly by X-ray diffraction work (for a summary see). Different stable phases were found. For the understanding of the physical and mechanical properties it is of great interest to know for the different stable phases the microstructure and the morphology, which can be obtained by TEM observations. Results of some TEM studies are reported here utilizing not only the conventional TEM but also the lattice fringe imaging technique.Specimens of the different phases were produced as described in They were prepared for TEM observations. For high resolution work a Siemens ELMISKOP 102 (operating voltage 125 kV) was used fitted with a double tilting stage (± 45°), for conventional TEM studies the specimens were examined in an AEI EM7 high voltage EM operated at 1 MeV.


2016 ◽  
Vol 61 (2) ◽  
pp. 957-964 ◽  
Author(s):  
A. Zieliński ◽  
J. Dobrzański ◽  
H. Purzyńska ◽  
G. Golański

AbstractThis paper presents the characteristics of the performance of P91 (X10CrMoVNb9-1), P92 (X10CrWMoVNb9-2) and VM12 (X12CrCoWVNb12-2-2) steels used for condition assessment of the pressure components of boilers with supercritical steam parameters. Studies on the mechanical properties, microstructure tests using scanning and transmission electron microscopy, and X-ray analysis of the phase composition of precipitates were performed for selected steels in the as-received condition and after long-term annealing. These steel characteristics are used for the evaluation of the microstructural changes and mechanical properties of the material of components after long-term service. The result of this study is the database of material characteristics representing the mechanical properties related to the microstructure analysis and it can be used for diagnosis of the components of pressure parts of power boilers.


2013 ◽  
Vol 763 ◽  
pp. 97-101
Author(s):  
Yao Li ◽  
Jun Jie Yang ◽  
Ping Xue ◽  
Wu Xin Yu ◽  
Zhi Jiang Zuo ◽  
...  

In this paper, pure metals Ti and Ta were used to study the effects of impulse current on their mechanical properties. The results showed that the impulse current caused the tensile strength of the two metals to decline remarkably. The elongation of metal Ta rose and was enhanced with increasing current density. But as for metal Ti, the elongation hardly rose. Theoretical analysis suggested that the impulse current had little apparent effect on HCP metals, for it had less slip systems; however, it had obvious effects on the elongation of BCC metals, for they had more potential slip systems. The transmission electron microscopy (TEM) observations showed that crystal microstructure of the two metals had not changed significantly.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1995
Author(s):  
Junfeng Bao ◽  
Yueguang Yu ◽  
Bowen Liu ◽  
Chengchang Jia ◽  
Chao Wu

New coatings resistant to corrosion in high-temperature molten zinc aluminum were prepared by supersonic flame spraying of various composite powders. These composite powders were prepared by mixing, granulation, and heat treatment of various proportions of Mo–B4C powder and WC and Co powder. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF–STEM), energy dispersive X-ray spectroscopy (EDS), and mechanical analysis were used to study the effects of Mo–B4C on the microstructure, phase, porosity, bonding strength, and elastic modulus of the composite powder and coating. Results show that the addition of an appropriate quantity of Mo–B4C reacts with Co to form ternary borides CoMo2B2 and CoMoB. Ternary boride forms a perfect continuous interface, improving the mechanical properties and corrosion resistance property of the coating. When the amount of Mo–B4C added was 35.2%, the mechanical properties of the prepared coating reached optimal values: minimum porosity of 0.31 ± 0.15%, coating bonding strength of 77.81 ± 1.77 MPa, nanoindentation hardness of 20.12 ± 1.85 GPa, Young’s modulus of 281.52 ± 30.22 GPa, and fracture toughness of 6.38 ± 0.45 MPa·m1/2.


2012 ◽  
Vol 186 ◽  
pp. 239-242
Author(s):  
Anna Sypień ◽  
Lidia Lityńska-Dobrzyńska ◽  
Anna Wierzbicka-Miernik ◽  
Pawel Zieba

The paper presents results of electron microscopy studies on the microstructure, chemical composition and mechanical properties of the Ni/AgBiCuSn/Ni interconnections obtained due to the conventional soldering. The scanning (SEM) and (TEM) transmission electron microscopy combined with an energy dispersive X-ray spectroscopy allowed to reveal the presence of two intermetallic phases (Ag3Sn and Cu6Sn5) in the whole interconnection area for all the applied solders and soldering times. In the vicinity of Ni substrate both phases were modified with Ni (2-4.5 %at.). Some of Ag3Sn precipitates took the elongated shape and they were located across whole interconnection width. The SEM examination after shear test showed that the joints ruptured in a ductile manner, as manifested by the dimples present on the fracture surfaces. The dimples prove also that the plastic deformation occurred along the loading direction.


2017 ◽  
Vol 62 (4) ◽  
pp. 2441-2448
Author(s):  
T. Jung ◽  
W. Kwaśny ◽  
Z. Rdzawski ◽  
W. Głuchowski ◽  
K. Matus ◽  
...  

AbstractThis paper presents the study of repetitive corrugation process influence on the strengthening of annealed alloy. Based on the results of mechanical properties of deformed sample, it has been found that the microhardness, ultimate tensile strength, yield strength and apparent elastic limit are significantly increased in relation to annealed sample. Examination on transmission electron microscopy confirmed the effect of intensive plastic deformation on structure fragmentation in the nanometric scale. This work confirmed the possibility of using the repetitive corrugation process to increase mechanical properties of CuCr0.6 alloy.


2005 ◽  
Vol 108-109 ◽  
pp. 709-712
Author(s):  
Stephanie Leclerc ◽  
Marie France Beaufort ◽  
Valerie Audurier ◽  
Alain Déclemy ◽  
Jean François Barbot

Single crystals SiC were implanted with 50 keV helium ions at room temperature and fluences in the range 1x1016 -1x1017 cm-2. The helium implantation induced swelling was studied through the measurement of the step height. The damage was studied by using X-ray diffraction measurements and the transmission electron microscopy observations. Degradation of mechanical properties is found after helium implantation.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Kenichi Takaya

Mast cell and basophil granules of the vertebrate contain heparin or related sulfated proteoglycans. Histamine is also present in mammalian mast cells and basophils. However, no histamine is detected in mast cell granules of the amphibian or fish, while it is shown in those of reptiles and birds A quantitative x-ray microanalysis of mast cell granules of fresh frozen dried ultrathin sections of the tongue of Wistar rats and tree frogs disclosed high concentrations of sulfur in rat mast cell granules and those of sulfur and magnesium in the tree frog granules. Their concentrations in tree frog mast cell granules were closely correlated (r=0.94).Fresh frozen dried ultrathin sections and fresh air-dried prints of the tree frog tongue and spleen and young red-eared turtle (ca. 6 g) spleen and heart blood were examined by a quantitative energy-dispersive x-ray microanalysis (X-650, Kevex-7000) for the element constituents of the granules of mast cells and basophils. The specimens were observed by transmission electron microscopy (TEM) (80-200 kV) and followed by scanning transmission electron microscopy (STEM) under an analytical electron microscope (X-650) at an acceleration voltage of 40 kV and a specimen current of 0.2 nA. A spot analysis was performed in a STEM mode for 100 s at a specimen current of 2 nA on the mast cell and basophil granules and other areas of the cells. Histamine was examined by the o-phthalaldehyde method.


Sign in / Sign up

Export Citation Format

Share Document