Storm surge computations in estuarine and near-coastal regions: the Mersey estuary and Irish Sea area

2009 ◽  
Vol 59 (6) ◽  
pp. 1061-1076 ◽  
Author(s):  
John Eric Jones ◽  
Alan Marshall Davies
Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1509
Author(s):  
Yuanyi Li ◽  
Huan Feng ◽  
Guillaume Vigouroux ◽  
Dekui Yuan ◽  
Guangyu Zhang ◽  
...  

A storm surge is a complex phenomenon in which waves, tide and current interact. Even though wind is the predominant force driving the surge, waves and tidal phase are also important factors that influence the mass and momentum transport during the surge. Devastating storm surges often occur in the Bohai Sea, a semi-enclosed shallow sea in North China, due to extreme storms. However, the effects of waves on storm surges in the Bohai Sea have not been quantified and the mechanisms responsible for the higher surges that affect part of the Bohai Sea have not been thoroughly studied. In this study, we set up a storm surge model, considering coupled effects of tides and waves on the surges. Validation against measured data shows that the coupled model is capable of simulating storm surges in the Bohai Sea. The simulation results indicate that the longshore currents, which are induced by the large gradient of radiation stress due to wave deformation, are one of the main contributors to the higher surges occurring in some coastal regions. The gently varying bathymetry is another factor contributing to these surges. With such bathymetry, the wave force direction is nearly uniform, and pushes a large amount of water in that direction. Under these conditions, the water accumulates in some parts of the coast, leading to higher surges in nearby coastal regions such as the south coast of the Bohai Bay and the west and south coasts of the Laizhou Bay. Results analysis also shows that the tidal phase at which the surge occurs influences the wave–current interactions, and these interactions are more evident in shallow waters. Neglecting these interactions can lead to inaccurate predictions of the storm surges due to overestimation or underestimation of wave-induced set-up.


2021 ◽  
Vol 33 (5) ◽  
pp. 187-194
Author(s):  
Young Hyun Park ◽  
Woo-Sun Park

The damage caused by typhoons is gradually increasing due to the climate change recently. Hence, many studies have been conducted over a long period of time on various factors that determine the characteristics of storm surge, and most of relationships have been discovered. Because storm surge is complexly determined by various factors, it often show different results and draw different conclusions. For this reason, this study was conducted to understand the various characteristics of storm surge caused by changes in the forward speed of typhoons. This study was carried out with a numerical model, and the effect of forward speed could be analyzed by simplifying other factors as much as possible. When forward speed is increased, storm surges caused by typhoons tended to increase gradually. The storm surge showed a wide and gentle increase at a slow speed, but a narrow and steep one at a fast speed. In the case of the same forward speed, it was found that the storm surge was significantly influenced by the water depth of actual sea area. It was confirmed that the change in forward speed after passing Jeju Island did not significant affect on the storm surge in the south coast of Korea.


Author(s):  
Thomas I. Petroliagkis

Abstract. The possibility of utilising statistical dependence methods in coastal flood hazard calculations is investigated, since flood risk is rarely a function of just one source variable but usually two or more. Source variables in most cases are not independent as they may be driven by the same weather event, so their dependence, which is capable of modulating their joint return period, has to be estimated before the calculation of their joint probability. Dependence and correlation may differ substantially from one another since dependence is focused heavily on tail (extreme) percentiles. The statistical analysis between surge and wave is performed over 32 river ending points along European coasts. Two sets of almost 35-year hindcasts of storm surge and wave height were adapted and results are presented by means of analytical tables and maps referring to both correlation and statistical dependence values. Further, the top 80 compound events were defined for each river ending point. Their frequency of occurrence was found to be distinctly higher during the cold months while their main low-level flow characteristics appear to be mainly in harmony with the transient nature of storms and their tracks. Overall, significantly strong values of positive correlations and dependencies were found over the Irish Sea, English Channel, south coasts of the North Sea, Norwegian Sea and Baltic Sea, with compound events taking place in a zero-lag mode. For the rest, mostly positive moderate dependence values were estimated even if a considerable number of them had correlations of almost zero or even negative value.


Author(s):  
R.P. Briggs ◽  
R.J.A. Atkinson ◽  
M. McAliskey ◽  
A. Rogerson

Histriobdella homari is a polychaete annelid belonging to the Order Eunicida and Family Histriobdellidae. Histriobdella homari is normally found in the gill chambers or among the eggs of the lobster Homarus vulgaris from the English Channel (Roscoff) and in the southwestern part of the North Sea (George & Hartmann-Schroder, 1985). Two independent sightings of H. homari living on the pleopods of Nephrops norvegicus from the Irish Sea and Clyde Sea area are reported.


Sign in / Sign up

Export Citation Format

Share Document