scholarly journals Fluorescence analysis allows to predict the oxidative capacity of humic quinones in dissolved organic matter: implication for pollutant degradation

Author(s):  
Davide Palma ◽  
Edith Parlanti ◽  
Mahaut Sourzac ◽  
Olivier Voldoire ◽  
Aude Beauger ◽  
...  

AbstractDissolved organic matter (DOM) controls the degradation and sequestration of aquatic pollutants and, in turn, water quality. In particular, pollutant degradation is performed by oxidant species that are generated by exposure of DOM to solar light, yet, since DOM is a very complex mixture of poorly known substances, the relationships between potential oxidant precursors in DOM and their oxydative capacity is poorly known. Here, we hypothesized that production of oxidant species could be predicted using fluorescence analysis. We analysed water samples from an alluvial plain by fluorescence spectroscopy; the three-dimensional spectra were then decomposed into seven individual components using a multi-way algorithm. Components include a protein-like fluorophore, e.g. tryptophan-like and tyrosine-like, three humic fluorophores, 2-naphthoxyacetic acid, and a by-product. We compared component levels with the ability of water samples to generate reactive species under solar light. The results show a strong correlation between reactive species production and the intensity of two humic-like fluorophores assigned to reduced quinones. Monitoring these fluorophores should thus allow to predict the ability of DOM degradation of pollutants in surface waters.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3059
Author(s):  
Diogo Folhas ◽  
Armando C. Duarte ◽  
Martin Pilote ◽  
Warwick F. Vincent ◽  
Pedro Freitas ◽  
...  

Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present study, we aimed to structurally characterize the DOM from a set of peatland thermokarst lakes that are known to be intense sites of microbial decomposition and methane emission. Samples were collected at different depths from three thermokarst lakes in the Sasapimakwananisikw (SAS) River valley near the eastern Hudson Bay community of Kuujjuarapik–Whapmagoostui (Nunavik, Canada). Samples were analyzed by spectrofluorometry, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and elemental analysis. Fluorescence analyses indicated considerable amounts of autochthonous DOM in the surface waters of one of SAS 1A, indicating a strong bioavailability of labile DOM, and consequently a greater methanogenic potential. The three lakes differed in their chemical composition and diversity, suggesting various DOM transformations phenomena. The usefulness of complementary analytical approaches to characterize the complex mixture of DOM in permafrost peatland waters cannot be overlooked, representing a first step towards greater comprehension of the organic geochemical properties of these permafrost-derived systems.


Water ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 266 ◽  
Author(s):  
Weifang Qiao ◽  
Xinyi Wang ◽  
Xiaoman Liu ◽  
Xiaoge Zhen ◽  
Jianwei Guo ◽  
...  

2016 ◽  
Vol 43 ◽  
pp. 118-127 ◽  
Author(s):  
Qianyuan Wu ◽  
Chao Li ◽  
Wenlong Wang ◽  
Tao He ◽  
Hongying Hu ◽  
...  

Limnology ◽  
2005 ◽  
Vol 6 (2) ◽  
pp. 101-115 ◽  
Author(s):  
Khan M. G. Mostofa ◽  
Takahito Yoshioka ◽  
Eiichi Konohira ◽  
Eiichiro Tanoue ◽  
Kazuhide Hayakawa ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Zachary Landry ◽  
Brandon K. Swan ◽  
Gerhard J. Herndl ◽  
Ramunas Stepanauskas ◽  
Stephen J. Giovannoni

ABSTRACTDeep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist.IMPORTANCECarbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8937-8952
Author(s):  
Peng Zhan ◽  
Jingjing Sun ◽  
Fang Wang ◽  
Lin Zhang ◽  
Jienan Chen

Enzymatic saccharification is a key step in the green conversion of lignocellulose to biofuels and other products. A key deficiency in common biocatalytic systems, such as Trichoderma reesei, is the insufficient presence of β-glucosidase (BGL). This study intended to develop an efficient process of BGL production as an enhancement to the T. reesei system. The authors investigated the process optimization of BGL by the mutant strain Aspergillus niger C112, which was previously developed in the authors’ laboratory. The culture medium and process (carbon, nitrogen, temperature, and pH) were optimized for cost-effective BGL production, which led to a maximum BGL activity of 8.91 ± 0.35 U/mL. In addition, the dynamics of the physio-chemical parameters (zeta potential and dissolved organic matter) of the process were studied and showed good correlations to the yield of BGL. Furthermore, a three-dimensional excitation-emission matrix fluorescence spectroscopy was successfully applied for analyzing the component, origin, and dynamics of dissolved organic matter, which contributed to a further understanding and optimization of BGL production.


2016 ◽  
Author(s):  
Lisa Thieme ◽  
Daniel Graeber ◽  
Martin Kaupenjohann ◽  
Jan Siemens

Abstract. Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation-emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax < 250 nm (340 nm), EMmax: 480 nm) and 2 (EXmax: 335 nm, EMmax: 408 nm) to total fluorescence and the humification index (HIX) decreased after both freezing treatments, while the shares of component 3 (EXmax: < 250 nm (305 nm), EMmax: 438 nm) as well as SUVA254 increased. The contribution of PARAFAC component 4 (EXmax: 280 nm, EMmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.


Sign in / Sign up

Export Citation Format

Share Document