scholarly journals White clover mosaic virus-induced gene silencing in pea

2012 ◽  
Vol 78 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Yukari Ido ◽  
Kenji S. Nakahara ◽  
Ichiro Uyeda
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuh Tzean ◽  
Ming-Chi Lee ◽  
Hsiao-Hsuan Jan ◽  
Yi-Shu Chiu ◽  
Tsui-Chin Tu ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


2020 ◽  
Author(s):  
Xuetong Yang ◽  
Jiali Ye ◽  
Fuqiang Niu ◽  
Yi Feng ◽  
Xiyue Song

Abstract Background: Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding, therefore, it is meaningful to identify and study the function of the genes related to pollen development and male sterility, which still not fully understanding currently. In this study, Yanzhan 4110S, a new thermo-sensitive genic male sterility (TGMS) wheat line, and its near isogenic line Yanzhan 4110 were carried out cytological features observation, bioinformatics analysis to investgate the abortion state and identified the genes involved in pollen development which have fertility regulation function. Barely stripe mosaic virus-induced gene silencing was used to verify the genes function.Results: Cytological analysis showed pollen abortion event of Yanzhan 4110S occur at the later uninucleate stage (Lun) under higher temperature induction (day/night temperatures of 22 °C/20 °C), when the anthers were collected and assessed for transcriptomic profiling through high-throughput sequencing. We then in-depth analyzed the differentially expressed genes (DEGs) by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, the results showed that the occurrence of Yanzhan 4110S male-sterility most likely related to metabolic pathway, including phenylpropanoid biosynthesis in the biosynthesis of other secondary metabolites, starch and sucrose metabolism in carbohydrate metabolism, carbon fixation in photosynthetic organisms as well as carbon metabolism in energy metabolism. The weighted gene co-expression network analysis in the transcriptome profiles further identified some hub genes, where the key genes involved in those pathways were intersection between the unique DEGs of Yanzhan 4110S in anther and hub genes, totally 228 genes, which were highly related to pollen development including TaMut11 and TaSF3. Moreover, further verification through barely stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. So, the genes TaMut11 and TaSF3 are related to fertility conversion of Yanzhan 4110S.Conclusion: Through comparative transcriptome bioinformatics analysis, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high temperature were identified in Yanzhan 4110S, and verificated by barely stripe mosaic virus-induced gene silencing. These findings provided researching the abortive mechanism in environment-sensitive genic male sterility wheat.


2007 ◽  
Vol 20 (11) ◽  
pp. 1323-1331 ◽  
Author(s):  
Marianne Bruun-Rasmussen ◽  
Christian Toft Madsen ◽  
Stine Jessing ◽  
Merete Albrechtsen

Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting photobleaching in infected barley plants was used as a reporter for silencing. In addition, downregulation of PDS mRNA was measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Using fragments of PDS ranging from 128 to 584 nucleotides in BSMV, we observed that insert length influenced stability but not efficiency of VIGS. Silencing was transient in most cases; however, the decrease in PDS mRNA levels measured by qRT-PCR began earlier and lasted longer than the photobleaching. Occasionally, silencing persisted and could be transmitted through seed as well as via mechanical inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector.


1980 ◽  
Vol 31 (2) ◽  
pp. 307 ◽  
Author(s):  
P Guy ◽  
A Gibbs ◽  
K Harrower

White clover mosaic virus infection of Ladino clover seedlings resulted in decreased plant weight and a 71 % decrease in the number of nodules per plant without the decrease in nodule size which is usually observed when legumes are virus-infected. Nodule numbers decreased both on plants nodulated with an effective strain and on those with an ineffective strain of Rhizobium.


2016 ◽  
pp. pp.00172.2016 ◽  
Author(s):  
Yu Mei ◽  
Chunquan Zhang ◽  
Bliss M. Kernodle ◽  
John H. Hill ◽  
Steven A. Whitham

Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 817-820 ◽  
Author(s):  
Robert T. Sherwood

Incidence of six viruses was tested in white clover from 28 rotationally grazed pastures of Pennsylvania (PA), New York (NY), and Vermont (VT). Each of 17 PA pastures was sampled fall 1994, spring 1995, fall 1995, and spring 1996, and 10 pastures were sampled fall 1996. Each of five NY and six VT pastures was sampled spring and fall 1995 and 1996. Enzyme-linked immunosorbent assays (ELISA) were conducted for red clover vein mosaic virus (RCVMV), white clover mosaic virus (WCMV), alfalfa mosaic virus (AlMV), peanut stunt virus (PSV), clover yellow mosaic virus (CYMV), and the potyvirus group (POTY). RCVMV, WCMV, AlMV, and POTY were detected in 28, 28, 27, and 25 of the 28 pastures and in 67, 32, 30, and 7% of the 3,065 samples tested, respectively. PSV occurred at low to moderate levels in 11 PA pastures. PSV was rare in NY and was not detected in VT. CYMV was never found. Incidence of each virus varied significantly among pastures. For any given virus, there was not a significant variation in incidence among sampling dates within the NY-VT samples. RCVMV, WCMV, and POTY varied among dates within PA.


Sign in / Sign up

Export Citation Format

Share Document