scholarly journals Identification and Verification of Genes Related to Pollen Development and Male Sterility Induced by High Temperature in Thermo-sensitive Genic Male Sterile Wheat Line YanZhan 4110S

Author(s):  
Xuetong Yang ◽  
Jiali Ye ◽  
Fuqiang Niu ◽  
Yi Feng ◽  
Xiyue Song

Abstract Background: Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding, therefore, it is meaningful to identify and study the function of the genes related to pollen development and male sterility, which still not fully understanding currently. In this study, Yanzhan 4110S, a new thermo-sensitive genic male sterility (TGMS) wheat line, and its near isogenic line Yanzhan 4110 were carried out cytological features observation, bioinformatics analysis to investgate the abortion state and identified the genes involved in pollen development which have fertility regulation function. Barely stripe mosaic virus-induced gene silencing was used to verify the genes function.Results: Cytological analysis showed pollen abortion event of Yanzhan 4110S occur at the later uninucleate stage (Lun) under higher temperature induction (day/night temperatures of 22 °C/20 °C), when the anthers were collected and assessed for transcriptomic profiling through high-throughput sequencing. We then in-depth analyzed the differentially expressed genes (DEGs) by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, the results showed that the occurrence of Yanzhan 4110S male-sterility most likely related to metabolic pathway, including phenylpropanoid biosynthesis in the biosynthesis of other secondary metabolites, starch and sucrose metabolism in carbohydrate metabolism, carbon fixation in photosynthetic organisms as well as carbon metabolism in energy metabolism. The weighted gene co-expression network analysis in the transcriptome profiles further identified some hub genes, where the key genes involved in those pathways were intersection between the unique DEGs of Yanzhan 4110S in anther and hub genes, totally 228 genes, which were highly related to pollen development including TaMut11 and TaSF3. Moreover, further verification through barely stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. So, the genes TaMut11 and TaSF3 are related to fertility conversion of Yanzhan 4110S.Conclusion: Through comparative transcriptome bioinformatics analysis, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high temperature were identified in Yanzhan 4110S, and verificated by barely stripe mosaic virus-induced gene silencing. These findings provided researching the abortive mechanism in environment-sensitive genic male sterility wheat.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuh Tzean ◽  
Ming-Chi Lee ◽  
Hsiao-Hsuan Jan ◽  
Yi-Shu Chiu ◽  
Tsui-Chin Tu ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


Crop Science ◽  
2018 ◽  
Vol 58 (5) ◽  
pp. 1866-1876 ◽  
Author(s):  
Xuetong Yang ◽  
Xingxia Geng ◽  
Zihan Liu ◽  
Jiali Ye ◽  
Mengfan Xu ◽  
...  

2007 ◽  
Vol 20 (11) ◽  
pp. 1323-1331 ◽  
Author(s):  
Marianne Bruun-Rasmussen ◽  
Christian Toft Madsen ◽  
Stine Jessing ◽  
Merete Albrechtsen

Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting photobleaching in infected barley plants was used as a reporter for silencing. In addition, downregulation of PDS mRNA was measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Using fragments of PDS ranging from 128 to 584 nucleotides in BSMV, we observed that insert length influenced stability but not efficiency of VIGS. Silencing was transient in most cases; however, the decrease in PDS mRNA levels measured by qRT-PCR began earlier and lasted longer than the photobleaching. Occasionally, silencing persisted and could be transmitted through seed as well as via mechanical inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector.


2016 ◽  
pp. pp.00172.2016 ◽  
Author(s):  
Yu Mei ◽  
Chunquan Zhang ◽  
Bliss M. Kernodle ◽  
John H. Hill ◽  
Steven A. Whitham

2021 ◽  
Author(s):  
Xingxia Geng ◽  
Xiaoxia Wang ◽  
Jingchen Wang ◽  
Xuetong Yang ◽  
lingli zhang ◽  
...  

Thermo-sensitive male sterility is of vital importance to heterosis, or hybrid vigor in crop production and hybrid breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. Here, we conducted comparative analyses to screen fertility related genes using RNA-seq, iTRAQ, and PRM-based assay. A gene encoding expansin protein in wheat, TaEXPB5, was isolated in KTM3315A, which was in the cell wall and preferentially upregulated expression in the fertility anthers. The silencing of TaEXPB5 displayed pollen abortion, the declination or sterility of fertility. Further, cytological investigation indicated that the silencing of TaEXPB5 induced the early degradation of tapetum and abnormal development of pollen wall. These results revealed that the silencing of TaEXPB5 could eliminate the effects of temperature on male fertility, and resulting in functional loss of fertility conversion, which implied that TaEXPB5 may be essential for anther or pollen development and male fertility of KTM3315A. These findings provide a novel insight into molecular mechanism of fertility conversion for thermo-sensitive cytoplasmic male-sterility wheat, and contribute to the molecular breeding of hybrid wheat in the future.


2019 ◽  
Author(s):  
Mei Liu ◽  
Zhiling Liang ◽  
Miguel A. Aranda ◽  
Ni Hong ◽  
Liming Liu ◽  
...  

AbstractCucurbits produce fruits or vegetables that have great dietary importance and economic significance worldwide. The published genomes of at least 11 cucurbit species are boosting gene mining and novel breeding strategies, however genetic transformation in cucurbits is impractical as a tool for gene function validation due to low transformation efficiencies. Virus-induced gene silencing (VIGS) is a potential alternative tool. So far, very few ideal VIGS vectors are available for cucurbits. Here, we describe a new VIGS vector derived from cucumber green mottle mosaic virus (CGMMV), a monopartite virus that infects cucurbits naturally. We show that the CGMMV vector is competent to induce efficient silencing of the phytoene desaturase (PDS) gene in the model plant Nicotiana benthamiana and in cucurbits, including watermelon, melon, cucumber and bottle gourd. Infection with the CGMMV vector harboring PDS sequences of 69-300 bp in length in the form of sense-oriented or hairpin cDNAs resulted in photobleaching phenotypes in N. benthamiana and cucurbits by PDS silencing. Additional results reflect that silencing of the PDS gene could persist for over two months and the silencing effect of CGMMV-based vectors could be passaged. These results demonstrate that CGMMV vector could serve as a powerful and easy-to-use tool for characterizing gene function in cucurbits.One sentence summaryA CGMMV-based vector enables gene function studies in cucurbits, an extremely low efficiency species for genetic transformation.


2021 ◽  
Author(s):  
Gung Pyo Lee ◽  
Sun-Ju Rhee ◽  
Yoon Jeong Jang ◽  
Jun-Young Park

Virus-induced gene silencing (VIGS) has been employed for the high-throughput analysis of endogenous gene function. We developed a CaMV 35S promoter-driven cucumber fruit mottle mosaic virus-Cm vector (pCF93) for the efficient generation of viral transcripts in plants. Using the novel pCF93 vector, we identified genes related to male sterility in watermelon (Citrullus lanatus), which is recalcitrant to genetic transformation. We previously reported reference-based and de novo transcriptomic profiling for the detection of differentially expressed genes between a male fertile line (DAH3615) and its near isogenic male sterile line (DAH3615-MS). Based on the RNA-seq results, we identified 38 de novo-exclusive differentially expressed genes (DEDEGs) that are potentially responsible for male sterility. Partial genes of 200~300bp were cloned into pCF93 which was then inoculated into DAH, a small type of watermelon that enables high-throughput screening with a small cultivation area. In this manner, we simultaneously characterized phenotypes associated with the 38 candidate genes in a common-sized greenhouse. Eight out of the 38 gene-silenced plants produced male sterile flowers with abnormal stamens and no pollens. Gene expression levels in flowers were validated via RT-qPCR. Stamen histological sections from male sterile floral buds and mature flowers showed developmental disruption and shrunken pollen sacs. Based on the current findings, we believe that the novel pCF93 vector and our VIGS system facilitate high-throughput analysis for the study of gene function in watermelons.


Sign in / Sign up

Export Citation Format

Share Document