Studies on molecular mechanisms of RNA silencing-mediated anti-virus defense in plants and RNA silencing suppression by plant viruses

2014 ◽  
Vol 80 (6) ◽  
pp. 527-528
Author(s):  
Atsushi Takeda
2012 ◽  
Vol 25 (2) ◽  
pp. 151-164 ◽  
Author(s):  
Alberto Carbonell ◽  
Gabriela Dujovny ◽  
Juan Antonio García ◽  
Adrian Valli

Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.


2010 ◽  
Author(s):  
Munir Mawassi ◽  
Valerian Dolja

RNA silencing is a defense mechanism that functions against virus infection and involves sequence-specific degradation of viral RNA. Diverse RNA and DNA viruses of plants encode RNA silencing suppressors (RSSs), which, in addition to their role in viral counterdefense, were implicated in the efficient accumulation of viral RNAs, virus transport, pathogenesis, and determination of the virus host range. Despite rapidly growing understanding of the mechanisms of RNA silencing suppression, systematic analysis of the roles played by diverse RSSs in virus biology and pathology is yet to be completed. Our research was aimed at conducting such analysis for two grapevine viruses, Grapevine virus A (GVA) and Grapevine leafroll-associated virus-2 (GLRaV- 2). Our major achievements on the previous cycle of BARD funding are as follows. 1. GVA and GLRaV-2 were engineered into efficient gene expression and silencing vectors for grapevine. The efficient techniques for grapevine infection resulting in systemic expression or silencing of the recombinant genes were developed. Therefore, GVA and GLRaV-2 were rendered into powerful tools of grapevine virology and functional genomics. 2. The GVA and GLRaV-2 RSSs, p10 and p24, respectively, were identified, and their roles in viral pathogenesis were determined. In particular, we found that p10 functions in suppression and pathogenesis are genetically separable. 3. We revealed that p10 is a self-interactive protein that is targeted to the nucleus. In contrast, p24 mechanism involves binding small interfering RNAs in the cytoplasm. We have also demonstrated that p10 is relatively weak, whereas p24 is extremely strong enhancer of the viral agroinfection. 4. We found that, in addition to the dedicated RSSs, GVA and GLRaV-2 counterdefenses involve ORF1 product and leader proteases, respectively. 5. We have teamed up with Dr. Koonin and Dr. Falnes groups to study the evolution and function of the AlkB domain presents in GVA and many other plant viruses. It was demonstrated that viral AlkBs are RNA-specific demethylases thus providing critical support for the biological relevance of the novel process of AlkB-mediated RNA repair. 


2009 ◽  
Vol 90 (2) ◽  
pp. 519-525 ◽  
Author(s):  
Sandra Martínez-Turiño ◽  
Carmen Hernández

Viral-derived double-stranded RNAs (dsRNAs) activate RNA silencing, generating small interfering RNAs (siRNAs) which are incorporated into an RNA-induced silencing complex (RISC) that promotes homology-dependent degradation of cognate RNAs. To counteract this, plant viruses express RNA silencing suppressors. Here, we show that the coat protein (CP) of Pelargonium flower break virus (PFBV), a member of the genus Carmovirus, is able to efficiently inhibit RNA silencing. Interestingly, PFBV CP blocked both sense RNA- and dsRNA-triggered RNA silencing and did not preclude generation of siRNAs, which is in contrast with the abilities that have been reported for other carmoviral CPs. We have also found that PFBV CP can bind siRNAs and that this ability correlates with silencing suppression activity and enhancement of potato virus X pathogenicity. Collectively, the results indicate that PFBV CP inhibits RNA silencing by sequestering siRNAs and preventing their incorporation into a RISC, thus behaving similarly to unrelated viral suppressors but dissimilarly to orthologous ones.


2012 ◽  
Vol 93 (8) ◽  
pp. 1841-1850 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Masamichi Nishiguchi ◽  
Tetsuo Tamada

Many plant viruses encode proteins that suppress RNA silencing, but little is known about the activity of silencing suppressors in roots. This study examined differences in the silencing suppression activity of different viruses in leaves and roots of Nicotiana benthamiana plants. Infection by tobacco mosaic virus, potato virus Y and cucumber mosaic virus but not potato virus X (PVX) resulted in strong silencing suppression activity of a transgene in both leaves and roots, whereas infection by beet necrotic yellow vein virus (BNYVV) and tobacco rattle virus (TRV) showed transgene silencing suppression in roots but not in leaves. For most viruses tested, viral negative-strand RNA accumulated at a very low level in roots, compared with considerable levels of positive-strand genomic RNA. Co-inoculation of leaves with PVX and either BNYVV or TRV produced an increase in PVX negative-strand RNA and subgenomic RNA (sgRNA) accumulation in roots. The cysteine-rich proteins (CRPs) BNYVV p14 and TRV 16K showed weak silencing suppression activity in leaves. However, when either of these CRPs was expressed from a PVX vector, there was an enhancement of PVX negative-strand RNA and sgRNA accumulation in roots compared with PVX alone. Such enhancement of PVX sgRNAs was also observed by expression of CRPs of other viruses and the well-known suppressors HC-Pro and p19 but not of the potato mop-top virus p8 CRP. These results indicate that BNYVV- and TRV-encoded CRPs suppress RNA silencing more efficiently in roots than in leaves.


2009 ◽  
Vol 90 (4) ◽  
pp. 1014-1024 ◽  
Author(s):  
Hiroko Senshu ◽  
Johji Ozeki ◽  
Ken Komatsu ◽  
Masayoshi Hashimoto ◽  
Kouji Hatada ◽  
...  

RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.


2009 ◽  
Vol 52 (4) ◽  
pp. 795-808 ◽  
Author(s):  
Silas Pessini Rodrigues ◽  
George G. Lindsey ◽  
Patricia Machado Bueno Fernandes

Virus diseases are significant threats to modern agriculture and their control remains a challenge to the management of cultivation. The main virus resistance strategies are based on either natural resistance or engineered virus-resistant plants. Recent progress in understanding the molecular mechanisms underlying the roles of resistance genes has promoted the development of new anti-virus strategies. Engineered plants, in particular plants expressing RNA-silencing nucleotides, are becoming increasingly important and are likely to provide more effective strategies in future. A general discussion on the biotechnology of plant responses to virus infection is followed by recent advances in engineered plant resistance.


2005 ◽  
Vol 79 (12) ◽  
pp. 7410-7418 ◽  
Author(s):  
Hui Wang ◽  
Kenneth J. Buckley ◽  
Xiaojuan Yang ◽  
R. Cody Buchmann ◽  
David M. Bisaro

ABSTRACT Most plant viruses are initiators and targets of RNA silencing and encode proteins that suppress this adaptive host defense. The DNA-containing geminiviruses are no exception, and the AL2 protein (also known as AC2, C2, and transcriptional activator protein) encoded by members of the genus Begomovirus has been shown to act as a silencing suppressor. Here, a three-component, Agrobacterium-mediated transient assay is used to further examine the silencing suppression activity of AL2 from Tomato golden mosaic virus (TGMV, a begomovirus) and to determine if the related L2 protein of Beet curly top virus (BCTV, genus Curtovirus) also has suppression activity. We show that TGMV AL2, AL21-100 (lacking the transcriptional activation domain), and BCTV L2 can all suppress RNA silencing directed against a green fluorescent protein (GFP) reporter gene when silencing is induced by a construct expressing an inverted repeat GFP RNA (dsGFP). We previously found that these viral proteins interact with and inactivate adenosine kinase (ADK), a cellular enzyme important for adenosine salvage and methyl cycle maintenance. Using the GFP-dsGFP system, we demonstrate here that codelivery of a construct expressing an inverted repeat ADK RNA (dsADK), or addition of an ADK inhibitor (the adenosine analogue A-134974), suppresses GFP-directed silencing in a manner similar to the geminivirus proteins. In addition, AL2/L2 suppression phenotypes and nucleic acid binding properties are shown to be different from those of the RNA virus suppressors HC-Pro and p19. These findings provide strong evidence that ADK activity is required to support RNA silencing, and indicate that the geminivirus proteins suppress silencing by a novel mechanism that involves ADK inhibition. Further, since AL21-100 is as effective a suppressor as the full-length AL2 protein, activation and silencing suppression appear to be independent activities.


2018 ◽  
Author(s):  
CMR Varanda ◽  
P Materatski ◽  
MD Campos ◽  
MIE Clara ◽  
G Nolasco ◽  
...  

AbstractRNA silencing is an important defense mechanism in plants, yet several plant viruses encode proteins that suppress it. Here the genome of Olive mild mosaic virus (OMMV) was screened for silencing suppressors using a green fluorescent based transient suppression assay. The full OMMV cDNA and 5 different OMMV open reading frames (ORFs) were cloned into Gateway binary destination vector pK7WG2, transformed into Agrobacterium tumefaciens C58C1 and agroinfiltrated into Nicotiana benthamiana 16C plants. Among all ORFs tested, CP and p6 showed suppressor activity, with CP showing a significant higher activity when compared to p6, yet lower than that of the full OMMV. This suggests that OMMV silencing suppression results from a complementary action of both CP and p6.Such discovery led to the use of those viral suppressors in the development of OMMV resistant plants through pathogen-derived resistance (PDR) based on RNA silencing. Two hairpin constructs targeting each suppressor were agroinfiltrated in N. benthamiana plants which were then inoculated with OMMV RNA. When silencing of both suppressors was achieved, a highly significant reduction in viral accumulation and symptom attenuation was observed as compared to that seen when each construct was used alone, and to the respective controls, thus showing clear effectiveness against OMMV infection. Data here obtained indicate that the use of both OMMV viral suppressors as transgenes is a very efficient and promising approach to obtain plants resistant to OMMV.ImportanceOMMV silencing suppressors were determined. Among all ORFs tested, CP and p6 showed suppressor activity, with CP showing a significant higher activity when compared to p6, yet lower than that of the full OMMV, suggesting a complementary action of both CP and p6 in silencing suppression.This is the first time that a silencing suppressor was found in a necrovirus and that two independent proteins act as silencing suppressors in a member of the Tombusviridae family.When silencing of both suppressors was achieved, a highly significant reduction in viral accumulation and symptom attenuation was observed as compared to that seen when each was used alone, thus showing clear effectiveness against OMMV infection. A high percentage of resistant plants was obtained (60%), indicating that the use of both OMMV viral suppressors as transgenes is a very efficient and promising approach to obtain plants resistant to OMMV.


2007 ◽  
Vol 82 (2) ◽  
pp. 974-986 ◽  
Author(s):  
Adrian Valli ◽  
Gabriela Dujovny ◽  
Juan Antonio García

ABSTRACT The RNA silencing pathway mediated by small interfering RNAs (siRNAs) plays an important antiviral role in eukaryotes. To counteract this defense barrier, a large number of plant viruses express proteins with RNA silencing suppression activity. Recently, it was reported that the ipomovirus Cucumber vein yellowing virus (CVYV), which lacks the typical silencing suppressor of members of the family Potyviridae, i.e., HCPro, has a duplicated P1 coding sequence and that the downstream P1 copy, named P1b, has silencing suppression activity. In this study, we provide experimental evidence that P1b is a serine protease that self-cleaves at its C terminus but that its proteolytic activity is not essential for silencing suppression. In contrast, a putative zinc finger and a conserved basic motif in the N-terminal region of the protein are required for efficient silencing suppression. In vitro gel filtration-fast protein liquid chromatography and in vivo bimolecular fluorescence complementation assays showed that P1b binds itself to form oligomeric structures and that the zinc finger-like motif is essential for the self interaction. Moreover, we observed that CVYV P1b forms complexes with synthetic siRNAs, and this ability correlated with both silencing suppression activity and enhancement of Potato virus X pathogenicity in a mutational analysis. Together, these results suggest that CVYV P1b resembles potyviral HCPro and other viral proteins in interfering RNA silencing by preventing siRNA loading into the RNA-induced silencing complex.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


Sign in / Sign up

Export Citation Format

Share Document