scholarly journals Role of RNA Silencing Suppression in the Pathogenicity and Host Specificity of the Grapevine Virus A

Author(s):  
Munir Mawassi ◽  
Valerian Dolja

RNA silencing is a defense mechanism that functions against virus infection and involves sequence-specific degradation of viral RNA. Diverse RNA and DNA viruses of plants encode RNA silencing suppressors (RSSs), which, in addition to their role in viral counterdefense, were implicated in the efficient accumulation of viral RNAs, virus transport, pathogenesis, and determination of the virus host range. Despite rapidly growing understanding of the mechanisms of RNA silencing suppression, systematic analysis of the roles played by diverse RSSs in virus biology and pathology is yet to be completed. Our research was aimed at conducting such analysis for two grapevine viruses, Grapevine virus A (GVA) and Grapevine leafroll-associated virus-2 (GLRaV- 2). Our major achievements on the previous cycle of BARD funding are as follows. 1. GVA and GLRaV-2 were engineered into efficient gene expression and silencing vectors for grapevine. The efficient techniques for grapevine infection resulting in systemic expression or silencing of the recombinant genes were developed. Therefore, GVA and GLRaV-2 were rendered into powerful tools of grapevine virology and functional genomics. 2. The GVA and GLRaV-2 RSSs, p10 and p24, respectively, were identified, and their roles in viral pathogenesis were determined. In particular, we found that p10 functions in suppression and pathogenesis are genetically separable. 3. We revealed that p10 is a self-interactive protein that is targeted to the nucleus. In contrast, p24 mechanism involves binding small interfering RNAs in the cytoplasm. We have also demonstrated that p10 is relatively weak, whereas p24 is extremely strong enhancer of the viral agroinfection. 4. We found that, in addition to the dedicated RSSs, GVA and GLRaV-2 counterdefenses involve ORF1 product and leader proteases, respectively. 5. We have teamed up with Dr. Koonin and Dr. Falnes groups to study the evolution and function of the AlkB domain presents in GVA and many other plant viruses. It was demonstrated that viral AlkBs are RNA-specific demethylases thus providing critical support for the biological relevance of the novel process of AlkB-mediated RNA repair. 

2006 ◽  
Vol 87 (8) ◽  
pp. 2387-2395 ◽  
Author(s):  
Z. Sh. Zhou ◽  
M. Dell'Orco ◽  
P. Saldarelli ◽  
C. Turturo ◽  
A. Minafra ◽  
...  

Higher plants use post-transcriptional gene silencing (PTGS), an RNA-degradation system, as a defence mechanism against viral infections. To counteract this, plant viruses encode and express PTGS suppressor proteins. Four of the five proteins encoded by the Grapevine virus A (GVA) genome were screened using a green fluorescent protein (GFP)-based transient expression assay, and the expression product of ORF5 (protein p10) was identified as a suppressor of silencing. ORF5 p10 suppressed local and systemic silencing induced by a transiently expressed single-stranded sense RNA. This protein was active towards both a transgene and exogenous GFP mRNAs. Ectopic expression of GVA-ORF5 by a Potato virus X vector enhanced symptom severity. The findings that p10 markedly reduces the levels of small interfering RNAs (siRNAs) and that the recombinant protein is able to bind single-stranded and double-stranded forms of siRNAs and microRNAs, suggest the existence of a potential mechanism of suppression based on RNA sequestering.


2009 ◽  
Vol 90 (2) ◽  
pp. 519-525 ◽  
Author(s):  
Sandra Martínez-Turiño ◽  
Carmen Hernández

Viral-derived double-stranded RNAs (dsRNAs) activate RNA silencing, generating small interfering RNAs (siRNAs) which are incorporated into an RNA-induced silencing complex (RISC) that promotes homology-dependent degradation of cognate RNAs. To counteract this, plant viruses express RNA silencing suppressors. Here, we show that the coat protein (CP) of Pelargonium flower break virus (PFBV), a member of the genus Carmovirus, is able to efficiently inhibit RNA silencing. Interestingly, PFBV CP blocked both sense RNA- and dsRNA-triggered RNA silencing and did not preclude generation of siRNAs, which is in contrast with the abilities that have been reported for other carmoviral CPs. We have also found that PFBV CP can bind siRNAs and that this ability correlates with silencing suppression activity and enhancement of potato virus X pathogenicity. Collectively, the results indicate that PFBV CP inhibits RNA silencing by sequestering siRNAs and preventing their incorporation into a RISC, thus behaving similarly to unrelated viral suppressors but dissimilarly to orthologous ones.


2007 ◽  
Vol 82 (2) ◽  
pp. 974-986 ◽  
Author(s):  
Adrian Valli ◽  
Gabriela Dujovny ◽  
Juan Antonio García

ABSTRACT The RNA silencing pathway mediated by small interfering RNAs (siRNAs) plays an important antiviral role in eukaryotes. To counteract this defense barrier, a large number of plant viruses express proteins with RNA silencing suppression activity. Recently, it was reported that the ipomovirus Cucumber vein yellowing virus (CVYV), which lacks the typical silencing suppressor of members of the family Potyviridae, i.e., HCPro, has a duplicated P1 coding sequence and that the downstream P1 copy, named P1b, has silencing suppression activity. In this study, we provide experimental evidence that P1b is a serine protease that self-cleaves at its C terminus but that its proteolytic activity is not essential for silencing suppression. In contrast, a putative zinc finger and a conserved basic motif in the N-terminal region of the protein are required for efficient silencing suppression. In vitro gel filtration-fast protein liquid chromatography and in vivo bimolecular fluorescence complementation assays showed that P1b binds itself to form oligomeric structures and that the zinc finger-like motif is essential for the self interaction. Moreover, we observed that CVYV P1b forms complexes with synthetic siRNAs, and this ability correlated with both silencing suppression activity and enhancement of Potato virus X pathogenicity in a mutational analysis. Together, these results suggest that CVYV P1b resembles potyviral HCPro and other viral proteins in interfering RNA silencing by preventing siRNA loading into the RNA-induced silencing complex.


2005 ◽  
Vol 18 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Tetsuo Tamada

In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.


2012 ◽  
Vol 25 (2) ◽  
pp. 151-164 ◽  
Author(s):  
Alberto Carbonell ◽  
Gabriela Dujovny ◽  
Juan Antonio García ◽  
Adrian Valli

Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.


2008 ◽  
Vol 83 (3) ◽  
pp. 1332-1340 ◽  
Author(s):  
Edgar A. Rodríguez-Negrete ◽  
Jimena Carrillo-Tripp ◽  
Rafael F. Rivera-Bustamante

ABSTRACT RNA silencing in plants is a natural defense system mechanism against invading nucleic acids such as viruses. Geminiviruses, a family of plant viruses characterized by a circular, single-stranded DNA genome, are thought to be both inducers and targets of RNA silencing. Some natural geminivirus-host interactions lead to symptom remission or host recovery, a process commonly associated with RNA silencing-mediated defense. Pepper golden mosaic virus (PepGMV)-infected pepper plants show a recovery phenotype, which has been associated with the presence of virus-derived small RNAs. The results presented here suggest that PepGMV is targeted by both posttranscriptional and transcriptional gene silencing mechanisms. Two types of virus-related small interfering RNAs (siRNAs) were detected: siRNAs of 21 to 22 nucleotides (nt) in size that are related to the coding regions (Rep, TrAP, REn, and movement protein genes) and a 24-nt population primarily associated to the intergenic regions. Methylation levels of the PepGMV A intergenic and coat protein (CP) coding region were measured by a bisulfite sequencing approach. An inverse correlation was observed between the methylation status of the intergenic region and the concentration of viral DNA and symptom severity. The intergenic region also showed a methylation profile conserved in all times analyzed. The CP region, on the other hand, did not show a defined profile, and its methylation density was significantly lower than the one found on the intergenic region. The participation of both PTGS and TGS mechanisms in host recovery is discussed.


2021 ◽  
Vol 108 ◽  
pp. 1-4
Author(s):  
Karthikeyan Gandhi ◽  
◽  
Rajamanickam Suppaiah ◽  
Suganyadevi Murugesan ◽  
Nagendran Krishnan ◽  
...  

RNAs play a significant role in regulating gene expression and their principal areas have been exploited for the control of plant viruses by the discovery of RNA silencing mechanism. RNA silencing or RNA interference (RNAi) is an innovative mechanism that regulates and restricts the amount of transcripts either by suppressing transcription (TGS) or by the degradation of sequence-specific RNA. RNAi can be used effectively to study the role of genes in a variety of eukaryotic organisms by reverse genetics. The technology has been employed in several fields such as drug resistance, therapeutics, development of genetically modified animals for research and transgenic plants targeting plant viruses. In plants, small interfering RNAs (siRNA) are the characteristic of 21 to 22 bp long dsRNA, which has been recognized by the regulatory mechanism of RNAi and leads to the sequence-specific degradation of target mRNA. In addition to virus disease control, RNAi can also be used to control mycotoxins and plant diseases caused by other organisms. This review enhances our current knowledge of RNAi and its larger applications in agriculture, specifically in plant virus disease management.


2012 ◽  
Vol 93 (8) ◽  
pp. 1841-1850 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Masamichi Nishiguchi ◽  
Tetsuo Tamada

Many plant viruses encode proteins that suppress RNA silencing, but little is known about the activity of silencing suppressors in roots. This study examined differences in the silencing suppression activity of different viruses in leaves and roots of Nicotiana benthamiana plants. Infection by tobacco mosaic virus, potato virus Y and cucumber mosaic virus but not potato virus X (PVX) resulted in strong silencing suppression activity of a transgene in both leaves and roots, whereas infection by beet necrotic yellow vein virus (BNYVV) and tobacco rattle virus (TRV) showed transgene silencing suppression in roots but not in leaves. For most viruses tested, viral negative-strand RNA accumulated at a very low level in roots, compared with considerable levels of positive-strand genomic RNA. Co-inoculation of leaves with PVX and either BNYVV or TRV produced an increase in PVX negative-strand RNA and subgenomic RNA (sgRNA) accumulation in roots. The cysteine-rich proteins (CRPs) BNYVV p14 and TRV 16K showed weak silencing suppression activity in leaves. However, when either of these CRPs was expressed from a PVX vector, there was an enhancement of PVX negative-strand RNA and sgRNA accumulation in roots compared with PVX alone. Such enhancement of PVX sgRNAs was also observed by expression of CRPs of other viruses and the well-known suppressors HC-Pro and p19 but not of the potato mop-top virus p8 CRP. These results indicate that BNYVV- and TRV-encoded CRPs suppress RNA silencing more efficiently in roots than in leaves.


2003 ◽  
Vol 16 (9) ◽  
pp. 769-776 ◽  
Author(s):  
Naoki Kadotani ◽  
Hitoshi Nakayashiki ◽  
Yukio Tosa ◽  
Shigeyuki Mayama

Systematic analysis of RNA silencing was carried out in the blast fungus Magnaporthe oryzae (formerly Magnaporthe grisea) using the enhanced green fluorescence protein (eGFP) gene as a model. To assess the ability of RNA species to induce RNA silencing in the fungus, plasmid constructs expressing sense, antisense, and hairpin RNAs were introduced into an eGFP-expressing transformant. The fluorescence of eGFP in the transformant was silenced much more efficiently by hairpin RNA of eGFP than by other RNA species. In the silenced transformants, the accumulation of eGFP mRNA was drastically reduced, but no methylation of the promoter or coding region was involved in it. In addition, we found small interfering RNAs (siRNAs) only in the silenced transformants. Interestingly, the siRNAs consisted of RNA molecules with at least three different sizes ranging from 19 to 23 nucleotides, and all of them contained both sense and antisense strands of the eGFP gene. To our knowledge, this is the first demonstration in which different molecular sizes of siRNAs have been found in filamentous fungi. Overall, these results indicate that RNA silencing operates in M. oryzae, which gives us a new tool for genome-wide gene analysis in this fungus.


Sign in / Sign up

Export Citation Format

Share Document