Comparison of SPE-TD-GC-FID with UPLC-PDA and GC-MS Methods for Analysis of Benzene, Toluene and Xylene Isomers in Solid-Liquid Mixing Paints

2011 ◽  
Vol 74 (1-2) ◽  
pp. 163-169 ◽  
Author(s):  
Shuai Zhang ◽  
Tianbo Zhao ◽  
Haiwang Wang ◽  
Jia Wang
Author(s):  
Deyin Gu ◽  
Fenghui Zhao ◽  
Xingmin Wang ◽  
Zuohua Liu

Abstract The solid-liquid mixing characteristics in a stirred tank with pitched blade impellers, dislocated impellers, and dislocated guide impellers were investigated through using CFD simulation. The effects of impeller speed, impeller type, aperture ratio, aperture length, solid particle diameter and initial solid holdup on the homogeneity degree in the solid-liquid mixing process were investigated. As expected, the solid particle suspension quality was increased with an increase in impeller speed. The dislocated impeller could reduce the accumulation of solid particles and improve the cloud height compared with pitched blade impeller under the same power consumption. The dislocated guide impeller could enhance the solid particles suspension quality on the basis of dislocated impeller, and the optimum aperture ratio and aperture length of dislocated guide impeller were 12.25% and 7 mm, respectively, in the solid-liquid mixing process. Smaller solid particle diameter and lower initial solid holdup led to higher homogeneity degree of solid-liquid mixing system. The dislocated guide impeller could increase solid particle integrated velocity and enhance turbulent intensity of solid-liquid two-phase compared with pitched blade impeller and dislocated impeller under the same power consumption.


2016 ◽  
Vol 318 ◽  
pp. 201-221 ◽  
Author(s):  
Bruno Blais ◽  
Manon Lassaigne ◽  
Christoph Goniva ◽  
Louis Fradette ◽  
François Bertrand
Keyword(s):  

2001 ◽  
Vol 44 (7) ◽  
pp. 165-171 ◽  
Author(s):  
S. W. Chang ◽  
H. J. La ◽  
S. J. Lee

A mixed culture derived from a gasoline-contaminated aquifer in Korea was enriched on toluene at 25°C. A study was conducted to characterize the substrate interaction of BTEX by toluene-enriched consortia and determine the effects of initial BTEX concentration on BTEX degradation. Substrate degradation patterns in individual aromatics were found to differ significantly from patterns for aromatics in mixtures. In the experiment of a single substrate, toluene was degraded fastest, followed by benzene, ethylbenzene, and the xylenes. In BTEX mixtures, degradation followed the order of toluene, ethylbenzene, benzene, and the xylenes. The studies conducting with toluene-enriched consortia evaluated substrate interactions by the concurrent presence of multiple BTEX compounds and revealed a range of substrate interaction patterns including no interaction, stimulation, inhibition, and cometabolism. The simultaneous presence of benzene and toluene were degraded with a slight inhibitory effect on each other. Ethylbenzene was shown to be the most potent inhibitor of BTEX degradation. p-xylene also inhibited the degradation of benzene, toluene, and ethylbenzene, whereas the presence of either benzene or toluene enhanced the degradation of ethylbenzene and the xylenes.


2014 ◽  
Vol 28 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Ryuta MISUMI ◽  
Kazuhiko NISHI ◽  
Meguru KAMINOYAMA

2018 ◽  
Vol 187 ◽  
pp. 04002
Author(s):  
Megawati ◽  
Bayu Triwibowo ◽  
Karwono ◽  
Waliyuddin Sammadikun ◽  
Rofiatun Musfiroh

Mixing is one of the important process in many areas of chemical industries, for instance pharmaceutical, drug, ink, paint and other industries. Solid-liquid suspension is produced for 80% of all mixing industries such as leaching process, crystallization process, catalytic reactions, precipitation, coagulation, dissolution and other applications. Two main objectives in solid-liquid mixing namely, avoid settling of solid particles on the tank bottom and ensure the solid particles are uniformly distributed. Many factors that can affect the quality of solid-liquid mixing, they are tank geometry, impeller geometry and speed, baffles, viscosity and density of media. Scale-up of the process is important to conduct before produce it on commercial scale. Two parameters for scale-up solid-liquid mixing are equal blend time and power per volume. Before scaling up the process to industrial scale, an engineer must know the condition of the mixture between both of two. VisiMix can simulating scale-up of solid-liquid mixing in order to know the phenomena inside the tank without conducting a large number of experiments and cheaper. The simulation start from keep the ratio of impeller to tank diameter remains constant, then change the condition operation of mixing. In this paper, power per volume parameter is more recommended as a result of the degree of uniformity of solid phase in liquid.


2002 ◽  
Vol 68 (6) ◽  
pp. 2660-2665 ◽  
Author(s):  
F. X. Prenafeta-Boldú ◽  
J. Vervoort ◽  
J. T. C. Grotenhuis ◽  
J. W. van Groenestijn

ABSTRACT The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution.


Sign in / Sign up

Export Citation Format

Share Document