aperture ratio
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 31)

H-INDEX

8
(FIVE YEARS 4)

2021 ◽  
Vol 34 ◽  
pp. 81-84
Author(s):  
S.V. Podlesnyak ◽  
N.N. Fashchevsky ◽  
Yu.N. Bondarenko ◽  
S.M. Andrievsky

An optical design for telescope with spherical primary mirror, planoidal surface and two-lens corrector is discussed. The spherical mirror hasn aperture ratio 1/2.69. After reflection from the spherical mirror, the wave front falls on a planoidal surface and “forms” the reflected wave front from a virtual mirror with e 2 = 1.576. After passing the two-lens corrector, the light is collected in the focal plane. A dot diagram in the focal plane shows that all three-order aberrations are successfully corrected. The effective field of view is 2 degrees. The aperture ratio is 1/2.28.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 920
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Yiming Zhao ◽  
Li Wang ◽  
Jitao Zhang ◽  
...  

Electrowetting displays (EWDs) are one of the most potential electronic papers. However, they have the problem of oil film splitting, which could lead to a low aperture ratio of EWDs. In this paper, a driving waveform was proposed to reduce oil film splitting. The driving waveform was composed of a rising stage and a driving stage. First, the rupture voltage of oil film was analyzed by testing the voltage characteristic curve of EWDs. Then, a quadratic function waveform with an initial voltage was applied at the rising stage to suppress oil film splitting. Finally, a square wave was applied at the driving stage to maintain the aperture ratio of EWDs. The experimental results show that the luminance was increased by 8.78% and the aperture ratio was increased by 4.47% compared with an exponential function driving waveform.


2021 ◽  
Vol 11 (21) ◽  
pp. 9883
Author(s):  
Weitao Zhang ◽  
Zengliang Gao ◽  
Qizhi Yang ◽  
Shuiqing Zhou ◽  
Ding Xia

Improvement of stirring performance is one of the primary objectives in solid–liquid mixing processes, such as the preparation of phase change materials (PCMs) for energy saving in refrigeration and heat pump systems. In this paper, three novel impellers are proposed: pitched-blade punched turbine (PBPT), bionic cut blade turbine (BCBT) and bionic cut punched blade turbine (BCPBT). An experimental test was conducted to validate the stirring system model based on the Eulerian–Eulerian method with the kinetic theory of granular flow. Then the performance of the novel impellers was predicted, studied, and compared. The outcomes indicate that a novel impeller, specifically BCPBT, can effectively suspend particles and dramatically reduce power consumption. A better solid–liquid suspension quality was obtained with an aperture diameter of 8 mm and aperture ratio of 13%. Within the range of impeller speeds and liquid viscosity studied in this this paper, higher impeller speeds and more viscous liquids are more conducive to particle dispersion. One of the most important contributions of this work lies in the design of novel impellers, an extent of energy conservation to 17% and efficient mixing was achieved. These results have reference significance for improving the energy efficiency of temperature regulation systems.


Author(s):  
Deyin Gu ◽  
Fenghui Zhao ◽  
Xingmin Wang ◽  
Zuohua Liu

Abstract The solid-liquid mixing characteristics in a stirred tank with pitched blade impellers, dislocated impellers, and dislocated guide impellers were investigated through using CFD simulation. The effects of impeller speed, impeller type, aperture ratio, aperture length, solid particle diameter and initial solid holdup on the homogeneity degree in the solid-liquid mixing process were investigated. As expected, the solid particle suspension quality was increased with an increase in impeller speed. The dislocated impeller could reduce the accumulation of solid particles and improve the cloud height compared with pitched blade impeller under the same power consumption. The dislocated guide impeller could enhance the solid particles suspension quality on the basis of dislocated impeller, and the optimum aperture ratio and aperture length of dislocated guide impeller were 12.25% and 7 mm, respectively, in the solid-liquid mixing process. Smaller solid particle diameter and lower initial solid holdup led to higher homogeneity degree of solid-liquid mixing system. The dislocated guide impeller could increase solid particle integrated velocity and enhance turbulent intensity of solid-liquid two-phase compared with pitched blade impeller and dislocated impeller under the same power consumption.


2021 ◽  
Author(s):  
S M Abdul-Awal ◽  
Md. Moin Uddin Talukder ◽  
Pinky Debnath ◽  
Sonia Nasrin ◽  
Sonia Akter ◽  
...  

Drought stress causes stomatal behavior change in most plants. Water deficit condition caused by drought is one of the most significant abiotic factors reducing plant growth, development, reproductive efficiency, and photosynthesis, resulting in yield loss. Maize (Zea mays L.) holds a superior position among all the cereals due to its versatile use in the food, feed, and alcohol industries. A common demonstrative feature of a complex network of signaling pathways led by predominantly abscisic acid under drought conditions is stomatal aperture reduction or stomatal closure, which allows the plant to reduce water loss through the stomatal pore and to sustain a long time on water deficit condition. This study analyses the stomatal density, stomatal closure percentages, and guard cell aperture reduction using a microscopy-based rapid & simple method to compare guard cell response & morphological variations of three hybrid maize varieties viz. BHM (BARI hybrid maize)-7, BHM-9, and BHM-13 developed by Bangladesh Agricultural Research Institute (BARI). A drought treatment was applied to all varieties at two different vegetative stages, vegetative stage 3 (V3) and V5, until they reach V4 and V6, respectively. After drought exposure at the V4 stage, the percentage of closed stomata of BHM-7, BHM-9, and BHM-13 was 21%, 23%, and 33%, respectively. The reduction in the guard cell aperture ratio of BHM-7, BHM-9, and BHM-13 was 14.83%, 10.92%, and 33.85%, respectively. At the V6 stage, for the second set of plants, the closed stomata of BHM-7, BHM-9, and BHM-13 were 18%, 21%, and 34%, respectively. The rate of reduction in guard cell aperture ratio of BHM-7, BHM-9, and BHM-13 was 5.52%, 2.48%, and 38.75%, respectively. Therefore, BHM-13 showed maximum drought adaptation capacity compared to BHM-7 and BHM-9 due to the highest percentage of closed stomata and the highest percentage of reduction in aperture ratio.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shufa Lai ◽  
Qinghua Zhong ◽  
Hailing Sun

Electrowetting display (EWD) is a new reflective display device with low power consumption and fast response speed. However, the maximum aperture ratio of EWDs is confined by oil-splitting. In order to suppress oil-splitting, a two-dimensional EWD model with a switch-on and a switch-off process was established in this paper. The process of oil-splitting was obtained by applying different voltage values in this model. Then, the relationship between the oil-splitting process and the waveforms with different slopes was analyzed. Based on this relationship, a driving waveform with a narrow falling ramp, low-voltage maintenance, and a rising ramp was proposed on the basis of square waveform. The proposed narrow falling ramp drove the oil to rupture on one side. The low-voltage maintenance stage drove the oil to shrink with a whole block. The proposed rising ramp was pushed the oil into a corner quickly. The experimental results showed that the oil splitting can be suppressed effectively by applying the proposed driving waveform. The aperture ratio of the proposed driving waveform was 2.9% higher than that of the square waveform with the same voltage.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lixia Tian ◽  
Pengfei Bai

As a reflective display technology, electrowetting displays (EWDs) have the advantages of paper-like display, low power consumption, fast response, and full color, but the aperture ratio of EWDs is seriously affected by oil dispersion and charge trapping. In order to improve the aperture ratio and optimize the display performance of EWDs, a combined pulse driving waveform with rising gradient design was proposed. First, an initial driving voltage was established by the threshold voltage of oil film rupture (Vth). And then, a rising gradient was designed to prevent oil from dispersing. At last, the oil splitting and movement were controlled to achieve the target aperture combined with the pulse waveform. Experimental results showed that the oil dispersion of EWDs can be effectively improved by using the proposed driving waveform, the aperture ratio of EWDs was increased by 3.16%, and the stability was increased by 71.43%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiko Ando ◽  
Makoto Yoneya

AbstractWe developed active-matrix in-plane switching liquid crystal displays (IPS-LCDs) with a new vertical structure composed of thin-film transistors (TFTs) that have an aperture ratio of 60% to reduce energy consumption. The novel TFT has a channel and a back channel made of a hydrogenated amorphous-silicon semiconductor layer sandwiched by thin silicon oxide insulating layers. The transfer characteristics are enhanced by uniformly shifting the threshold voltage to be higher than the maximum LC driving voltage (typically > 5 V). The enhanced TFT characteristics provided with a new driving scheme and shielding electrodes enables both the common line and black matrix to be eliminated. We fabricated an IPS TFT-LCD panel with aperture and contrast ratios that are 160% those of the conventional pixel structure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Taiyuan Zhang ◽  
Yong Deng

Electrowetting display (EWD) device is a new type of reflective optoelectronic equipment with paper-like display performance. Due to the oil backflow phenomenon, it is difficult for pixels to be maintained a stable aperture ratio, so the grayscale of EWDs cannot be stabilized. To reduce the oil backflow in EWDs, a driving waveform composed of a driving signal and a periodic reset signal was proposed in this paper. A direct current (DC) signal was designed as the driving signal for driving pixels. The aperture ratio of pixels was determined by the amplitude of the DC signal. The periodic reset signal was divided into a charge release phase and a driving recovery phase. During the charge release phase, the driving voltage was abruptly dropped to 0 V for a period to release trapped charges. In the driving recovery phase, the driving voltage was rapidly increased from 0 V to a maximum value. To reach the same grayscale of EWDs, the driving waveform was returned to the driving signal at the end of the driving recovery phase. Experimental results showed that the aperture ratio of EWDs was unchanged when the driving waveform was applied. However, the aperture ratio of pixels was gradually decreased with the conventional driving waveform. It was indicated that the charge trapping effect and the oil backflow phenomenon can be effectively inhibited by the proposed driving waveform. Compared with the conventional driving waveform, the speed of oil backflow was reduced by 90.4%. The results demonstrated that the proposed driving waveform is beneficial for the achievement of stable grayscale in EWDs.


Sign in / Sign up

Export Citation Format

Share Document