Loss of host fidelity in highly inbred populations of the parasitoid wasp Aphidius ervi (Hymenoptera: Braconidae)

2016 ◽  
Vol 90 (2) ◽  
pp. 649-658 ◽  
Author(s):  
D. A. Sepúlveda ◽  
F. Zepeda-Paulo ◽  
C. C. Ramírez ◽  
B. Lavandero ◽  
C. C. Figueroa
Insects ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 127 ◽  
Author(s):  
Martin Luquet ◽  
Olympe Tritto ◽  
Anne-Marie Cortesero ◽  
Bruno Jaloux ◽  
Sylvia Anton

Early experience of olfactory stimuli associated with their host–plant complex (HPC) is an important driver of parasitoid foraging choices, notably leading to host fidelity. Mechanisms involved, such as peripheral or central modulation, and the impact of a complex olfactory environment are unknown. Using olfactometer assays, we compared HPC preference of Aphidius ervi Haliday (Hymenoptera:Braconidae) females originating from two different HPCs, either with the other HPC in close vicinity (complex environment) or without (simple environment). We also investigated antennal responses to volatiles differentially emitted by the two respective HPCs. In a simple environment, HPC of origin had an influence on olfactory choice, but the preferences observed were asymmetric according to parasitoid origin. Electroantennographic recordings revealed significant sensitivity differences for some of the tested individual volatiles, which are emitted differentially by the two HPCs. Besides, presence of an alternative HPC during early stages modified subsequent parasitoid preferences. We discuss how increased olfactory complexity could influence parasitoid host foraging and biological control in diversified cropping systems.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 342 ◽  
Author(s):  
Dominique Colinet ◽  
Caroline Anselme ◽  
Emeline Deleury ◽  
Donato Mancini ◽  
Julie Poulain ◽  
...  

Oecologia ◽  
2006 ◽  
Vol 150 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Shaun A. Langley ◽  
Kelley J. Tilmon ◽  
Bradley J. Cardinale ◽  
Anthony R. Ives

Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 397
Author(s):  
Gabriel I. Ballesteros ◽  
Daniela A. Sepúlveda ◽  
Christian C. Figueroa

Generalist parasitoids of aphids, such as the wasp Aphidius ervi, display significant differences in terms of host preference and host acceptance, depending on the host on which they developed (natal host), which is preferred over a non-natal host, a trait known as host fidelity. This trait allows females to quickly find hosts in heterogeneous environments, a process mediated by chemosensory/olfactory mechanisms, as parasitoids rely on olfaction and chemical cues during host selection. Thus, it is expected that proteins participating in chemosensory recognition, such as odorant-binding proteins (OBPs) and odorant receptors (ORs) would play a key role in host preference. In this study, we addressed the effect of parasitoid reciprocal host switching between two aphid hosts (Sitobion avenae and Acyrthosiphon pisum) on the expression patterns of chemosensory genes in the wasp A. ervi. First, by using a transcriptomic approach based on RNAseq of A. ervi females reared on S. avenae and A. pisum, we were able to annotate a total of 91 transcripts related to chemoperception. We also performed an in-silico expression analysis and found three OBPs and five ORs displaying different expression levels. Then, by using qRT-PCR amplification, we found significant differences in the expression levels of these eight genes when the parasitoids were reciprocally transplanted from S. avenae onto A. pisum and vice versa. This suggests that the expression levels of genes coding for odorant receptors and odorant-binding proteins would be regulated by the specific plant–aphid host complex where the parasitoids develop (maternal previous experience) and that chemosensory genes coding for olfactory mechanisms would play a crucial role on host preference and host acceptance, ultimately leading to the establishment of host fidelity in A. ervi parasitoids.


2013 ◽  
Vol 67 (3) ◽  
pp. 539-547 ◽  
Author(s):  
D.R. George ◽  
L. King ◽  
E. Donkin ◽  
C.E. Jones ◽  
P. Croft ◽  
...  

2008 ◽  
Vol 98 (4) ◽  
pp. 371-377 ◽  
Author(s):  
C.A. Villagra ◽  
R.A. Vásquez ◽  
H.M. Niemeyer

AbstractDespite the fact that insect learning capacity has been broadly demonstrated, the role that this process plays during mate searching has been scarcely explored. We studied whether the sexual behaviour of a male parasitic wasp can be conditioned to the odours from two alternative host plant complexes (HPCs) present during its first copulation. The experimental subjects were newly emerged males of the aphid parasitoid,Aphidius ervi, and two alternative HPCs (alfalfa or wheat). In the training protocol, copulation experience corresponded to an unconditioning stimulus and HPC odours to the conditioning stimuli. The initial (just after eclosion) and trained responses were assessed in a glass Y-olfactometer. The results showed that neither alfalfa HPC nor wheat HPC stimuli elicited sexual-related behaviours in initial male responses. Conversely, both HPCs triggered strong attraction and wing fanning courtship behaviour in trained responses when the male was exposed to a female plus HPC during training. In males trained with females plus a given HPC but tested with the alternative HPC in the olfactometer, trained response showed a similar trend to the non-associative treatments. Hence, through learning, the olfactory stimulus context present during copulation could become a predictive cue for further mate searching. These results are discussed in terms of parasitic wasp ecology and host fidelity.


2013 ◽  
Vol 9 (3) ◽  
pp. 20121151 ◽  
Author(s):  
Mouhammad Shadi Khudr ◽  
Johan A. Oldekop ◽  
David M. Shuker ◽  
Richard F. Preziosi

Host–parasite interactions are a key paradigm for understanding the process of coevolution. Central to coevolution is how genetic variation in interacting species allows parasites to evolve manipulative strategies. However, genetic variation in the parasite may also be associated with host phenotype changes, thereby changing the selection on both species. For instance, parasites often induce changes in the behaviour of their host to maximize their own fitness, yet the quantitative genetic basis for behavioural manipulation has not been fully demonstrated. Here, we show that the genotype of the parasitoid wasp Aphidius ervi has a significant effect on where its aphid host Acyrthosiphon pisum moves to die following parasitism, including the likelihood that the aphid abandons the plant. These results provide a clear example of an interspecific indirect genetic effect whereby the genetics of one species influences the expression of a specific behavioural trait in another.


Sign in / Sign up

Export Citation Format

Share Document