scholarly journals Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 342 ◽  
Author(s):  
Dominique Colinet ◽  
Caroline Anselme ◽  
Emeline Deleury ◽  
Donato Mancini ◽  
Julie Poulain ◽  
...  
2013 ◽  
Vol 9 (3) ◽  
pp. 20121151 ◽  
Author(s):  
Mouhammad Shadi Khudr ◽  
Johan A. Oldekop ◽  
David M. Shuker ◽  
Richard F. Preziosi

Host–parasite interactions are a key paradigm for understanding the process of coevolution. Central to coevolution is how genetic variation in interacting species allows parasites to evolve manipulative strategies. However, genetic variation in the parasite may also be associated with host phenotype changes, thereby changing the selection on both species. For instance, parasites often induce changes in the behaviour of their host to maximize their own fitness, yet the quantitative genetic basis for behavioural manipulation has not been fully demonstrated. Here, we show that the genotype of the parasitoid wasp Aphidius ervi has a significant effect on where its aphid host Acyrthosiphon pisum moves to die following parasitism, including the likelihood that the aphid abandons the plant. These results provide a clear example of an interspecific indirect genetic effect whereby the genetics of one species influences the expression of a specific behavioural trait in another.


2021 ◽  
Author(s):  
Melanie R. Smee ◽  
Sally A. Raines ◽  
Julia Ferrari

AbstractMicrobial symbionts often alter the phenotype of their host. Benefits and costs to hosts depend on many factors, including host genotype, symbiont species and genotype, and environmental conditions. Here, we present a study demonstrating genotype-by-genotype (G×G) interactions between multiple species of endosymbionts harboured by an insect, and the first to quantify the relative importance of G×G interactions compared with species interactions in such systems. In the most extensive study to date, we microinjected all possible combinations of five Hamiltonella defensa and five Fukatsuia symbiotica (X-type; PAXS) isolates into the pea aphid, Acyrthosiphon pisum. We applied several ecological challenges: a parasitoid wasp, a fungal pathogen, heat shock, and performance on different host plants. Surprisingly, genetic identity and genotype × genotype interactions explained far more of the phenotypic variation (on average 22% and 31% respectively) than species identity or species interactions (on average 12% and 0.4%, respectively). We determined the costs and benefits associated with co-infection, and how these compared to corresponding single infections. All phenotypes were highly reliant on individual isolates or interactions between isolates of the co-infecting partners. Our findings highlight the importance of exploring the eco-evolutionary consequences of these highly specific interactions in communities of co-inherited species.


1991 ◽  
Vol 123 (6) ◽  
pp. 1229-1237 ◽  
Author(s):  
B. Bai

AbstractConspecific host discrimination and larval competition in two aphid parasitoid species were studied in the laboratory using the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), as a host. Aphidius ervi Haliday (Hymenoptera: Aphidiidae) used internal host cues to discriminate between unparasitized and conspecific parasitized hosts. When only parasitized hosts were available, females oviposited into recently parasitized ones where their progeny had a good chance to survive, but rejected those parasitized ≥24 h earlier where their offspring normally died. Competitions occurred only after both eggs had hatched. Larvae eliminated supernumeraries by means of physical combat and physiological suppression. In Aphelinus asychis Walker (Hymenoptera: Aphelinidae), factors, or changes in host internal condition, associated with hatching of the first egg resulted in suppression of conspecific competitors which could be in either larval or egg stage. The older larvae always won competitions through physiological means. A wasp’s oviposition decision is shown to be influenced by the probability of its progeny’s survival. Species that have different reproductive strategies may respond differently to identical host conditions.


Oecologia ◽  
2006 ◽  
Vol 150 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Shaun A. Langley ◽  
Kelley J. Tilmon ◽  
Bradley J. Cardinale ◽  
Anthony R. Ives

2018 ◽  
Vol 72 ◽  
pp. 53-58 ◽  
Author(s):  
Vincenzo Trotta ◽  
Pierluigi Forlano ◽  
Patrizia Falabella ◽  
Donatella Battaglia ◽  
Paolo Fanti

2007 ◽  
Vol 20 (1) ◽  
pp. 25-32 ◽  
Author(s):  
R. Libbrecht ◽  
D. M. Gwynn ◽  
M. D. E. Fellowes

2021 ◽  
Author(s):  
Samuel Alexander Purkiss ◽  
Mouhammad Shadi Khudr ◽  
Oscar Enrique Aguinaga ◽  
Reinmar Hager

Host-parasite interactions represent complex co-evolving systems in which genetic variation within a species can significantly affect selective pressure on traits in the other (for example via inter-species indirect genetic effects). While often viewed as a two-species interaction between host and parasite species, some systems are more complex due to the involvement of symbionts in the host that influence its immunity, enemies of the host, and the parasite through intraguild predation. However, it remains unclear what the joint effects of intraguild predation, defensive endosymbiosis, within-species genetic variation and indirect genetic effects on host immunity are. We have addressed this question in an important agricultural pest system, the pea aphid Acyrthosiphon pisum, which shows significant intraspecific variability in immunity to the parasitoid wasp Aphidius ervi due to immunity conferring endosymbiotic bacteria. In a complex experiment involving a quantitative genetic design of the parasitoid, two ecologically different aphid lineages and the aphid lion Chrysoperla carnea as an intraguild predator, we demonstrate that aphid immunity is affected by intraspecific genetic variation in the parasitoid and the aphid, as well as by associated differences in the defensive endosymbiont communities. Using 16s rRNA sequencing, we identified secondary symbionts that differed between the lineages. We further show that aphid lineages differ in their altruistic behaviour once parasitised whereby infested aphids move away from the clonal colony to facilitate predation. The outcome of these complex between-species interactions not only shape important host-parasite systems but have also implications for understanding the evolution of multitrophic interactions, and aphid biocontrol.


2004 ◽  
Vol 57 ◽  
pp. 214-220 ◽  
Author(s):  
X.Z. He ◽  
Q. Wang ◽  
D.A.J. Teulon

Aphidius ervi Haliday is an important parasitoid of several aphid species and information is needed for the development of massrearing techniques and better understanding of biological control ecology The emergence sexual maturation and oviposition of A ervi on pea aphid Acyrthosiphon pisum (Harris) was studied in the laboratory at 201deg;C and 6070 RH with 168 h lightdark About 95 of parasitoids emerged during the photophase Females needed a significantly longer time than males to complete their life cycle Newly emerged males were able to perform their courtship display but failed to mate until they were 4 h old; newly emerged females were able to respond to males courtship display and mate Females attacked aphids in both light and dark conditions The number of eggs laid and parasitism (number of aphids parasitised) per oviposition bout (2 h oviposition period) were significantly greater in the photophase than in the scotophase


2002 ◽  
Vol 32 (7) ◽  
pp. 729-735 ◽  
Author(s):  
N Parkinson ◽  
E.H Richards ◽  
C Conyers ◽  
I Smith ◽  
J.P Edwards

Sign in / Sign up

Export Citation Format

Share Document