Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae), alters individual fixed preferences for pea aphid color morphs

Oecologia ◽  
2006 ◽  
Vol 150 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Shaun A. Langley ◽  
Kelley J. Tilmon ◽  
Bradley J. Cardinale ◽  
Anthony R. Ives
BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 342 ◽  
Author(s):  
Dominique Colinet ◽  
Caroline Anselme ◽  
Emeline Deleury ◽  
Donato Mancini ◽  
Julie Poulain ◽  
...  

2002 ◽  
Vol 48 (10) ◽  
pp. 971-980 ◽  
Author(s):  
S. Li ◽  
P. Falabella ◽  
S. Giannantonio ◽  
P. Fanti ◽  
D. Battaglia ◽  
...  
Keyword(s):  

2007 ◽  
Vol 20 (1) ◽  
pp. 25-32 ◽  
Author(s):  
R. Libbrecht ◽  
D. M. Gwynn ◽  
M. D. E. Fellowes

2021 ◽  
Author(s):  
Samuel Alexander Purkiss ◽  
Mouhammad Shadi Khudr ◽  
Oscar Enrique Aguinaga ◽  
Reinmar Hager

Host-parasite interactions represent complex co-evolving systems in which genetic variation within a species can significantly affect selective pressure on traits in the other (for example via inter-species indirect genetic effects). While often viewed as a two-species interaction between host and parasite species, some systems are more complex due to the involvement of symbionts in the host that influence its immunity, enemies of the host, and the parasite through intraguild predation. However, it remains unclear what the joint effects of intraguild predation, defensive endosymbiosis, within-species genetic variation and indirect genetic effects on host immunity are. We have addressed this question in an important agricultural pest system, the pea aphid Acyrthosiphon pisum, which shows significant intraspecific variability in immunity to the parasitoid wasp Aphidius ervi due to immunity conferring endosymbiotic bacteria. In a complex experiment involving a quantitative genetic design of the parasitoid, two ecologically different aphid lineages and the aphid lion Chrysoperla carnea as an intraguild predator, we demonstrate that aphid immunity is affected by intraspecific genetic variation in the parasitoid and the aphid, as well as by associated differences in the defensive endosymbiont communities. Using 16s rRNA sequencing, we identified secondary symbionts that differed between the lineages. We further show that aphid lineages differ in their altruistic behaviour once parasitised whereby infested aphids move away from the clonal colony to facilitate predation. The outcome of these complex between-species interactions not only shape important host-parasite systems but have also implications for understanding the evolution of multitrophic interactions, and aphid biocontrol.


2004 ◽  
Vol 57 ◽  
pp. 214-220 ◽  
Author(s):  
X.Z. He ◽  
Q. Wang ◽  
D.A.J. Teulon

Aphidius ervi Haliday is an important parasitoid of several aphid species and information is needed for the development of massrearing techniques and better understanding of biological control ecology The emergence sexual maturation and oviposition of A ervi on pea aphid Acyrthosiphon pisum (Harris) was studied in the laboratory at 201deg;C and 6070 RH with 168 h lightdark About 95 of parasitoids emerged during the photophase Females needed a significantly longer time than males to complete their life cycle Newly emerged males were able to perform their courtship display but failed to mate until they were 4 h old; newly emerged females were able to respond to males courtship display and mate Females attacked aphids in both light and dark conditions The number of eggs laid and parasitism (number of aphids parasitised) per oviposition bout (2 h oviposition period) were significantly greater in the photophase than in the scotophase


1977 ◽  
Vol 107 (4) ◽  
pp. 419-423 ◽  
Author(s):  
A. Campbell ◽  
M. Mackauer

AbstractThe relationship between the temperature and the speed of development is described for the Kamloops ‘biotype’ of the pea aphid, Acyrthosiphon pisum, and some of its associated hymenopterous parasites. The primary parasites are: Aphidius ervi ervi, A. ervi pulcher, A. smithi, and Praon pequodorum; and the secondary parasites are: Asaphes lucens and Dendrocerus niger. For each species the lower temperature threshold for development and the time-to-adult was determined under constant laboratory conditions using field-grown alfalfa as a host plant for the pea aphid and the first-generation offspring of field-collected aphids and parasites. The thermal constants enable the prediction of aphid and parasite population growth, as influenced by temperature, on a physiological time-scale.


2013 ◽  
Vol 67 (3) ◽  
pp. 539-547 ◽  
Author(s):  
D.R. George ◽  
L. King ◽  
E. Donkin ◽  
C.E. Jones ◽  
P. Croft ◽  
...  

2004 ◽  
Vol 110 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Gary C. Chang ◽  
Jeff Neufeld ◽  
Daniel Durr ◽  
Patrick S. Duetting ◽  
Sanford D. Eigenbrode
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document