Physiological host range of Trissolcus mitsukurii, a candidate biological control agent of Halyomorpha halys in Europe

Author(s):  
Lucrezia Giovannini ◽  
Giuseppino Sabbatini-Peverieri ◽  
Leonardo Marianelli ◽  
Gabriele Rondoni ◽  
Eric Conti ◽  
...  
2021 ◽  
Author(s):  
Lucrezia Giovannini ◽  
Giuseppino Sabbatini-Peverieri ◽  
Leonardo Marianelli ◽  
Gabriele Rondoni ◽  
Eric Conti ◽  
...  

Abstract The invasive stink bug Halyomorpha halys is a severe agricultural pest of worldwide importance, and chemical insecticides are largely sprayed for the control of its populations. Negative impacts and several failures in chemical pest management led to consider classical biological control as one of the most promising methods in a long-term perspective. The Asian egg parasitoid Trissolcus japonicus is the main candidate biocontrol agent of H. halys, but more recently a second Asian egg parasitoid, Trissolcus mitsukurii, is getting attention after adventive populations were found on H. halys egg masses in Europe. Before recommending the use of T. mitsukurii for biological control of H. halys, a risk analysis is necessary and therefore here we present the first study on the fundamental physiological host range of this parasitoid in Europe. Tests conducted with T. mitsukurii on different hemipterans, using three different experimental designs, revealed a broad physiological host range, comparable with the host range displayed by T. japonicus under similar laboratory conditions. Specifically, in addition to its coevolved host H. halys, T. mitsukurii successfully parasitized the majority of tested pentatomid species and one scutellerid, although with highly variable emergence rates. Host egg sizes positively affected parasitoid size and female egg load. Further studies, testing more complex systems that involve olfactory cues from host and host plants, will simulate different aspects of the parasitoid host location behavior under field conditions, allowing in-depth evaluation of the possible risks associated with the use of T. mitsukurii as a biocontrol agent of H. halys.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Angelica M. Reddy ◽  
Paul D. Pratt ◽  
Brenda J. Grewell ◽  
Nathan E. Harms ◽  
Ximena Cibils-Stewart ◽  
...  

Exotic water primroses (Ludwigia spp.) are aggressive invaders in aquatic ecosystems worldwide. To date, management of exotic Ludwigia spp. has been limited to physical and chemical control methods. Biological control provides an alternative approach for the management of invasive Ludwigia spp. but little is known regarding the natural enemies of these exotic plants. Herein the biology and host range of Lysathia flavipes (Boheman), a herbivorous beetle associated with Ludwigia spp. in Argentina and Uruguay, was studied to determine its suitability as a biocontrol agent for multiple closely related target weeds in the USA. The beetle matures from egg to adult in 19.9 ± 1.4 days at 25 °C; females lived 86.3 ± 35.6 days and laid 1510.6 ± 543.4 eggs over their lifespans. No-choice development and oviposition tests were conducted using four Ludwigia species and seven native plant species. Lysathia flavipes showed little discrimination between plant species: larvae aggressively fed and completed development, and the resulting females (F1 generation) oviposited viable eggs on most plant species regardless of origin. These results indicate that L. flavipes is not sufficiently host-specific for further consideration as a biocontrol agent of exotic Ludwigia spp. in the USA and further testing is not warranted.


2016 ◽  
Vol 45 (4) ◽  
pp. 897-908 ◽  
Author(s):  
Yanzhuo Zhang ◽  
James L. Hanula ◽  
Scott Horn ◽  
Cera Jones ◽  
S. Kristine Braman ◽  
...  

1990 ◽  
Vol 4 (3) ◽  
pp. 465-470 ◽  
Author(s):  
Gregory J. Weidemann ◽  
David O. Tebeest

The determination of host range is an important component in developing a plant pathogen for use as a bioherbicide. The safety of non-target economic and wild plants must be assured before experimental release and commercial use. In contrast to other methods of weed control, the genetic variability and genetic stability of both the weed and the biological control agent must be considered. Schemes to determine host range generally assume a close phylogenetic relationship between the weed host and its co-evolved pathogens. Therefore, testing generally is based on inoculation of genetically related plant species and progresses to more distantly related species until the host range is circumscribed. Several potential weaknesses in these schemes will be illustrated with examples using specific biological control agents. Future tests must place greater emphasis on testing taxa representing the full range of genetic diversity within the biogeographic area of intended use.


Sign in / Sign up

Export Citation Format

Share Document