Separation control using synthetic vortex generator jets in axial compressor cascade

2006 ◽  
Vol 22 (6) ◽  
pp. 521-527 ◽  
Author(s):  
Xinqian Zheng ◽  
Sheng Zhou ◽  
Anping Hou ◽  
Zhengli Jiang ◽  
Daijun Ling
Author(s):  
Rolf Sondergaard ◽  
Jeffrey P. Bons ◽  
Matthew Sucher ◽  
Richard B. Rivir

An experimental investigation has been conducted into the feasibility of increasing blade spacing (pitch) at constant chord in a linear turbine cascade. Vortex generator jets (VGJs) located on the suction surface of each blade in the cascade are employed to maintain attached boundary layers despite the increasing tendency to separate due to the increased uncovered turning. Tests were performed at low Mach numbers and at blade Reynolds numbers between 25,000 and 75,000 (based on axial chord and inlet velocity). The vortex generator jets (30 degree injection angle and 90 degree skew angle) were operated with steady flow with momentum blowing ratios between zero and five, and from two spanwise rows of holes located at 45% and 63% axial chord. In the absence of control, pitch-averaged wake losses increase up to 600% as the blade pitch is increased from its design value to twice the design value. With the application of VGJs, these losses were driven down to or below the losses at the design pitch. The effectiveness of VGJs was found to increase modestly with increasing Reynolds number up to the highest value tested, Re = 75,000. The fluid phenomenon responsible for this remarkable range of effectiveness is clearly more than a simple boundary layer transition effect, as boundary layer trips installed on the same blades without VGJ blowing had no beneficial effect on blade losses. Also, tests conducted at elevated levels of freestream turbulence (4% at the cascade inlet) where the suction surface boundary layer is generally turbulent, showed wake loss reduction comparable to tests conducted at the nominal 1% freestream turbulence. For all configurations, blowing from the upstream row had the greatest wake influence. These findings open the possibility that future LPT designs could take advantage of active separation control using integrated VGJs to reduce the turbine part count and stage weight without significant increase in pressure losses.


2012 ◽  
Vol 588-589 ◽  
pp. 1786-1789
Author(s):  
Yong Hui Xie ◽  
Zhong Yang Shen ◽  
Tao Fan

In order to investigate the mechanism of flow separation control in conical diffuser by vortex generator jets (VGJs) method, numerical simulations were conducted to discuss the effect of VGJs with different parameters on flow control. The aerodynamic performance in conical diffuser with angle of 14° was tested and analyzed based on Shear-Stress-Transport (SST) simulation. The flow charts at several sections were analyzed, illuminating the formation of complex vortices. Moreover, the effects of 5 VGJs parameters on the diffuser were analyzed by orthogonal analysis. It was shown that the number of jets and the pitch angle of jet showed more profound influence on the flow control by VGJs.


2004 ◽  
Vol 70 (696) ◽  
pp. 2012-2017
Author(s):  
Masashi HIGASHIURA ◽  
Hidetoshi AOKI ◽  
Tadashi MORIOKA ◽  
Shinji HONAMI

Author(s):  
Ahmed M. Diaa ◽  
Mohammed F. El-Dosoky ◽  
Mahmoud A. Ahmed ◽  
Omar E. Abdelhafez

Secondary flows are noxious to axial compressor performance. To overcome and control those secondary flows, vortex generators are used as a passive control device. Controlling secondary flows will lead to a further improvements in the compressor performance. A new design of vortex generator is considered in this investigation in order to control secondary flows in axial compressor cascade at design and off-design conditions. Numerical simulations of a three-dimensional compressible turbulent flow have been performed to explore the effect of the vortex generators on the reduction of secondary flows. Six different incidence angles are used for the off-design operation investigations. Based on the simulation results, the pressure, velocity, and streamline are used to follow up the development of the secondary flows. Thence, total pressure loss coefficient, static pressure rise coefficient, difference in flow deflection angle, and diffusion factor are estimated. Results indicate that vortex generators have a significant effect on the development of secondary flows at off design operation as they cause a reduction in total pressure loss, they also affect the loading behavior of the cascade as they cause a slight change in the cascade deflection, and a slight decrease in the diffusion factor which causes unloading of the blade. Static pressure rise is significantly reduced at negative incidence angles while a slight reduction occurs at positive incidence angles. In a word, the new design of the vortex generator enhances the cascade aerodynamic performance and enlarges the operating range of the cascade towards the positive incidence region.


Author(s):  
Michihiro NISHI ◽  
Yasuhiro SHIBATA ◽  
Minoru OKAMOTO ◽  
Masayoshi NAKAMURA

Sign in / Sign up

Export Citation Format

Share Document