scholarly journals Lyapunov stability of competitive cells dynamics in tumor mechanobiology

2021 ◽  
Vol 37 (2) ◽  
pp. 244-263 ◽  
Author(s):  
Angelo Rosario Carotenuto ◽  
Arsenio Cutolo ◽  
Stefania Palumbo ◽  
Massimiliano Fraldi

Abstract Poromechanics plays a key role in modelling hard and soft tissue behaviours, by providing a thermodynamic framework in which chemo-mechanical mutual interactions among fluid and solid constituents can be consistently rooted, at different scale levels. In this context, how different biological species (including cells, extra-cellular components and chemical metabolites) interplay within complex environments is studied for characterizing the mechanobiology of tumor growth, governed by intratumoral residual stresses that initiate mechanotransductive processes deregulating normal tissue homeostasis and leading to tissue remodelling. Despite the coupling between tumor poroelasticity and interspecific competitive dynamics has recently highlighted how microscopic cells and environment interactions influence growth-associated stresses and tumor pathophysiology, the nonlinear interlacing among biochemical factors and mechanics somehow hindered the possibility of gaining qualitative insights into cells dynamics. Motivated by this, in the present work we recover the linear poroelasticity in order to benefit of a reduced complexity, so first deriving the well-known Lyapunov stability criterion from the thermodynamic dissipation principle and then analysing the stability of the mechanical competition among cells fighting for common space and resources during cancer growth and invasion. At the end, the linear poroelastic model enriched by interspecific dynamics is also exploited to show how growth anisotropy can alter the stress field in spherical tumor masses, by thus indirectly affecting cell mechano-sensing. GraphicAbstract

2020 ◽  
Vol 38 (3A) ◽  
pp. 446-456
Author(s):  
Bashar F. Midhat

Step down DC-DC converters are power electronic circuits, which mainly used to convert voltage from a level to a lower level. In this paper, a discontinuous controller is proposed as a control method in order to control Step-Down DC-DC converters. A Lyapunov stability criterion is used to mathematically prove the ability of the proposed controller to give the desired voltage. Simulationsl1 are performedl1 in MATLABl1 software. The simulationl1 resultsl1 are presentedl1 for changesl1 in referencel1 voltagel1 and inputl1 voltagel1 as well as stepl1 loadl1 variations. The resultsl1 showl1 the goodl1 performancel1 of the proposedl1 discontinuousl1 controller.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Jifeng Chu ◽  
Ting Xia

Leta(t),b(t)be continuousT-periodic functions with∫0Tb(t)dt=0. We establish one stability criterion for the linear damped oscillatorx′′+b(t)x′+a(t)x=0. Moreover, based on the computation of the corresponding Birkhoff normal forms, we present a sufficient condition for the stability of the equilibrium of the nonlinear damped oscillatorx′′+b(t)x′+a(t)x+c(t)x2n-1+e(t,x)=0, wheren≥2,c(t)is a continuousT-periodic function,e(t,x)is continuousT-periodic intand dominated by the powerx2nin a neighborhood ofx=0.


2018 ◽  
Vol 941 ◽  
pp. 2325-2330 ◽  
Author(s):  
Manuel Carsí ◽  
Fernando Carreño ◽  
Oscar A. Ruano

The modeling of the forming of materials at high homologous temperatures allows obtaining optimum forming parameters, reduced costs and improving final properties of the finished product. In this work, the behavior of the ZK30 Magnesium alloy was characterized by means of compression tests at temperatures 300 to 450oC and strain rates between 0.1 and 8.7 s-1. Using data from these tests, the parameters of the Garofalo equation are calculated. In addition, by means of the second Lyapunov stability criterion, the optimum temperature at a given temperature is determined which should minimize the appearance of deformation bands and cracks during hot working. This temperature was found to be 641 K (368oC) at 8.7 s-1.


2013 ◽  
Vol 437 ◽  
pp. 716-721 ◽  
Author(s):  
Yue Ming Li ◽  
Ying Hao Zhang ◽  
Guo Cheng Zhang ◽  
Zhong Hui Hu

This paper addresses the stability analysis on S Plane Control in terms of both position and velocity control. Employing Lyapunov stability theory and T-passivity theory, this paper proves the stability of the position controller based on S Plane Control, and on this ground, the stability analysis of the velocity controller based on S Plane Control is done. Finally, the S Plane Control results obtained from the sea trials are given.


2018 ◽  
Vol 41 (6) ◽  
pp. 1750-1760
Author(s):  
Erkan Kayacan

This paper addresses the Sliding Mode Learning Control (SMLC) of uncertain nonlinear systems with Lyapunov stability analysis. In the control scheme, a conventional control term is used to provide the system stability in compact space while a type-2 neuro-fuzzy controller (T2NFC) learns system behaviour so that the T2NFC completely takes over overall control of the system in a very short time period. The stability of the sliding mode learning algorithm has been proven in the literature; however, it is restrictive for systems without overall system stability. To address this shortcoming, a novel control structure with a novel sliding surface is proposed in this paper, and the stability of the overall system is proven for nth-order uncertain nonlinear systems. To investigate the capability and effectiveness of the proposed learning and control algorithms, the simulation studies have been carried out under noisy conditions. The simulation results confirm that the developed SMLC algorithm can learn the system behaviour in the absence of any mathematical model knowledge and exhibit robust control performance against external disturbances.


2013 ◽  
Vol 303-306 ◽  
pp. 1678-1684
Author(s):  
Xian Chun Meng ◽  
Kai Li ◽  
Dong Mei Zhang ◽  
Jian Hu Zuo ◽  
Yan Jun Li

The dynamics equation of mobile welding robot is established. In controller design of the mobile welding robot, the non-holonomic constraint is introduced that limits the size of the transverse sliding and avoid the coordinates of the instantaneous center of rotation is larger than the wheelbase, to ensure the robot’s stability. Based on kinematics oscillator, the effect of uncertain dynamic parameters is considered. According to the Lyapunov stability criterion, the control algorithm is deduced. Simulating results by MATLAB software shows that the design of the control algorithm is stable, convergent and effective.


2006 ◽  
Vol 129 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Chein-Chung Sun ◽  
Sheng-Ming Wu ◽  
Hung-Yuan Chung ◽  
Wen-Jer Chang

This paper presents a new structure of Takagi-Sugeno (T-S) fuzzy controllers, which is called T-S fuzzy region controller or TSFRC for short. The fuzzy region concept is used to partition the plant rules into several fuzzy regions so that only one region is fired at the instant of each input vector being coming. Because each fuzzy region contains several plant rules, the fuzzy region can be regarded as a polytopic uncertain model. Therefore, robust control techniques would be essential for designing the feedback gains of each fuzzy region. To improve the speed of response, the decay rate constraint is imposed when deriving the stability conditions with Lyapunov stability criterion. To design TSFRC with the linear matrix inequality (LMI) solver, all stability conditions are represented in terms of LMIs. Finally, a two-link robot system is used to prove the feasibility and validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document