The Role of Biaxial Loading on Smooth Muscle Contractility in the Nulliparous Murine Cervix

Author(s):  
Cassandra K. Conway ◽  
Asha Varghese ◽  
Mala Mahendroo ◽  
Kristin S. Miller
2008 ◽  
Vol 586 (20) ◽  
pp. 4843-4857 ◽  
Author(s):  
Ye Chun Ruan ◽  
Zhe Wang ◽  
Jian Yang Du ◽  
Wu Lin Zuo ◽  
Jing Hui Guo ◽  
...  

2013 ◽  
Vol 304 (6) ◽  
pp. C485-C504 ◽  
Author(s):  
Trent Butler ◽  
Jonathan Paul ◽  
Nick Europe-Finner ◽  
Roger Smith ◽  
Eng-Cheng Chan

The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.


Cell Calcium ◽  
2017 ◽  
Vol 63 ◽  
pp. 60-65 ◽  
Author(s):  
C.H. Feldman ◽  
C.A. Grotegut ◽  
P.B. Rosenberg

2020 ◽  
Vol 21 (21) ◽  
pp. 7982
Author(s):  
Yoshihiko Chiba ◽  
Mayumi Matsumoto ◽  
Motohiko Hanazaki ◽  
Hiroyasu Sakai

In allergic bronchial asthma, an increased smooth muscle contractility of the airways is one of the causes of the airway hyperresponsiveness (AHR). Increasing evidence also suggests a possible involvement of microRNAs (miRNAs) in airway diseases, including asthma, although their roles in function and pathology largely unknown. The current study aimed to determine the role of a miRNA, miR-140-3p, in the control of protein expression of CD38, which is believed to regulate the contraction of smooth muscles, including the airways. In bronchial smooth muscles (BSMs) of the mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an upregulation of CD38 protein concurrently with a significant reduction of miR-140-3p was observed. In cultured human BSM cells (hBSMCs), transfection with a synthetic miR-140-3p inhibitor caused an increase in CD38 protein, indicating that its basal protein expression is regulated by endogenous miR-140-3p. Treatment of the hBSMCs with interleukin-13 (IL-13), an asthma-related cytokine, caused both an upregulation of CD38 protein and a downregulation of miR-140-3p. Transfection of the hBSMCs with miR-140-3p mimic inhibited the CD38 protein upregulation induced by IL-13. On the other hand, neither a CD38 product cyclic ADP-ribose (cADPR) nor its antagonist 8-bromo-cADPR had an effect on the BSM contraction even in the antigen-challenged mice. Taken together, the current findings suggest that the downregulation of miR-140-3p induced by IL-13 might cause an upregulation of CD38 protein in BSM cells of the disease, although functional and pathological roles of the upregulated CD38 are still unclear.


Sign in / Sign up

Export Citation Format

Share Document