Effects of single and dual inoculation with selected microsymbionts (rhizobia and arbuscular mycorrhizal fungi) on field growth and nitrogen fixation of Calliandra calothyrsus Meissn

2008 ◽  
Vol 73 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Didier Lesueur ◽  
Amadou Sarr
2017 ◽  
Vol 9 (4) ◽  
pp. 186 ◽  
Author(s):  
Lei Huang ◽  
Yuji He ◽  
Yanjun Guo

High concentrations of soil Al3+ in acid soil severely influence the growth of Medicago sativa (alfalfa). The objective of the current study was to analyze whether Arbuscular Mycorrhizal Fungi (AMF) inoculation could improve alfalfa growth in acid soils. A two-way completely randomized factorial design was employed for M. sativa and M. lupulina (black medick) with two inoculations (rhizobia and AMF) and three Al3+ levels, and replicated four times. The soil Al3+ levels were adjusted to 900 mg/kg, 1000 mg/kg and 1100 mg/kg. Spores of AMF were isolated directly from rhizosphere soils of black medick. The rhizobia were isolated from root nodules in fields separately from two plant species. At each Al3+ level, there were four inoculations, non-inoculation, AMF solely, rhizobia solely and dual-inoculation with AMF and rhizobia. Soil Al3+ concentration significantly limited above- and below-ground growth of both alfalfa and black medick, reducing plant height, branching number, shoot and root weight, and root length, surface area and volume. Compared to rhizobia, AMF showed a higher tolerance to soil Al3+. AMF inoculation increased the shoot and root weight of both plant species under most circumstances. Overall, AMF colonization had a trend in increasing the contents of phosphorus in both plant species at all Al3+ concentrations but not nitrogen and potassium. Dual inoculation significantly increased nodulation ability, enabling both plant species to form nodules at 900 and 1000 mg/kg Al3+. Though the soil Al3+ concentration influenced the efficiency of AMF inoculation, AMF inoculation improved nodulation, increased plant growth and nutrient uptake, suggesting that it was an alternative way in improving alfalfa growth in acid soils.


2020 ◽  
Vol 66 (No. 6) ◽  
pp. 287-294
Author(s):  
Miao-Miao Xie ◽  
Ying-Ning Zou ◽  
Qiang-Sheng Wu ◽  
Ze-Zhi Zhang ◽  
Kamil Kuča

The present work aimed to analyse whether and how single or dual inoculation with arbuscular mycorrhizal fungi (Funneliformis mosseae, Paraglomus occultum, and Rhizophagus intraradices) and rhizobia (Rhizobium trifolii) improved plant growth and stimulated nitrogen (N) acquisition of white clover. AMF inoculation significantly (P < 0.05) increased root nodule number by 117‒173%, and additional Rh considerably stimulated mycorrhizal growth. Single AMF or Rh treatment dramatically increased shoot by 36‒281% and root biomass by 16‒36% than non-inoculated control, and dual inoculation of Rh and P. occultum or R. intraradices further magnified the positive effect. Leaf and root N content, root total soluble protein content, root nitrogenase activity, and amino acid (e.g., alanine, arginine, asparagine, aspartate, phenylalanine, proline, and tryptophan) concentrations were significantly increased by single or dual inoculation, while dual inoculation of AMF and Rh had significantly superior roles than single corresponding AMF or Rh inoculation. These results suggested that AMF and Rh represented synergetic effects on accelerating N acquisition of white clover to some extent, while the combination of P. occultum and Rh was the best.  


2016 ◽  
Vol 5 (10) ◽  
pp. 4954
Author(s):  
Shinde B. P. ◽  
Jaya Thakur*

Soil microorganisms can be used to decrease the input of fertilizers, pesticides and other chemicals. Among soil microorganisms, arbuscular mycorrhizal fungi (AMF) and Rhizobium spp. can promote plant growth. Integration of arbuscular mycorrhizal fungus with Rhizobium spp. thus appears to be a promising approach for sustainable agriculture. The study evaluated the response of pea (Pisum sativum) to AMF species Glomus fasciculatum and Glomus intraradix and Rhizobium leguminosarum bv. viceae, regarding the growth, nodulation and yield. Pea plants were grown in pots until the flowering stage (35 days). Five replicates of control, with Rhizobium and mycorrhiza alone and the dual inoculation of Rhizobium and AMF were maintained during present studies. The obtained results demonstrated that the dual inoculation of pea plants significantly increased the plant growth, nodule biomass and nodule number in comparison with single inoculation with AMF and Rhizobium leguminosarum bv. viceae.


Sign in / Sign up

Export Citation Format

Share Document