dual inoculation
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
rashed zaghloul ◽  
Hany Abdelrahman ◽  
Ahmed Abdelkhalek ◽  
Yehia Galal ◽  
Hussein Abdel Aziz ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yoshie Hori ◽  
Hiroaki Fujita ◽  
Kei Hiruma ◽  
Kazuhiko Narisawa ◽  
Hirokazu Toju

In natural and agricultural ecosystems, survival and growth of plants depend substantially on residing microbes in the endosphere and rhizosphere. Although numerous studies have reported the presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a major challenge to understand how sets of microbial species positively or negatively affect plants’ performance. By conducting a series of single- and dual-inoculation experiments of 13 plant-associated fungi targeting a Brassicaceae plant species (Brassica rapa var. perviridis), we here systematically evaluated how microbial effects on plants depend on presence/absence of co-occurring microbes. The comparison of single- and dual-inoculation experiments showed that combinations of the fungal isolates with the highest plant-growth promoting effects in single inoculations did not have highly positive impacts on plant performance traits (e.g., shoot dry weight). In contrast, pairs of fungi with small/moderate contributions to plant growth in single-inoculation contexts showed the greatest effects on plants among the 78 fungal pairs examined. These results on the offset and synergistic effects of pairs of microbes suggest that inoculation experiments of single microbial species/isolates can result in the overestimation or underestimation of microbial functions in multi-species contexts. Because keeping single-microbe systems under outdoor conditions is impractical, designing sets of microbes that can maximize performance of crop plants is an important step for the use of microbial functions in sustainable agriculture.


2021 ◽  
Author(s):  
Pallavi Mansotra ◽  
Poonam Sharma ◽  
Asmita Sirari ◽  
Navneet Aggarwal

Abstract The present study was designed to screen the Mesorhizobium strains (50) for tolerance in four recommended pesticides for chickpea. It was followed by in-vitro development of robust pesticide tolerant strains by growth in pesticides amended media over several generations. Further, verification of the multifunctional traits of pesticide tolerant mesorhizobia under pesticide stress was conducted in-vitro. Among different pesticides, significantly high tolerance in Mesorhizobium strains was observed with recommended doses of pendimethalin (37%) and ready-mix (36%) followed by chlorpyrifos (31%) and carbendazim (30%), on an overall basis. Based on multifunctional traits, Mesorhizobium strains viz. MR2, MR17 and recommended MR33 were the most promising. Ecological performance of the potential Mesorhizobium strains alone and in dual-inoculation with recommended PGP rhizobacterium strain RB-1 (Pseudomonas argenttinensis JX239745.1) was further analyzed in field following standard pesticide application in PBG-7 and GPF-2 chickpea varieties for two consecutive rabi seasons (2015 and 2016). Dual-inoculant treatments; recommended RB-1+MR33 (4.1%) and RB-1+MR2 (3.8%) significantly increased the grain yield over Mesorhizobium alone treatments viz MR33 and MR2, respectively. Grain yield in PBG7 variety was significantly affected (7.3%) by the microbial inoculant treatments over GPF2 variety. Therefore, the potential pesticide tolerant strains MR2 and MR33 can be further explored as compatible dual-inoculants with recommended RB-1 for chickpea under environmentally stressed conditions (pesticide application) at multiple locations. Our approach using robust multifunctional pesticide tolerant Mesorhizobium for bio-augmentation of chickpea with might be helpful in the formulation of effective bio-inoculants consortia in establishing successful chickpea–Mesorhizobium symbiosis.


2021 ◽  
Author(s):  
Yoshie Hori ◽  
Hiroaki Fujita ◽  
Kei Hiruma ◽  
Kazuhiko Narisawa ◽  
Hirokazu Toju

In natural and agricultural ecosystems, survival and growth of plants depend substantially on microbes in the endosphere and rhizosphere. Although numerous studies have reported the presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a major challenge to understand how sets of microbial species positively or negatively affect plants' performance. By conducting a series of single- and dual-inoculation experiments of 13 endophytic and soil fungi targeting a Brassicaceae plant species, we here evaluated how microbial effects on plants depend on presence/absence of co-occurring microbes. The comparison of single- and dual-inoculation experiments showed that combinations of the fungal isolates with the highest plant-growth promoting effects in single inoculations did not yield highly positive impacts on plant performance traits (e.g., shoot dry weight). In contrast, pairs of fungi including small/moderate contributions to plants in single-inoculation contexts showed the greatest effects on plants among the 78 fungal pairs examined. These results on the offset and synergistic effects of pairs of microbes suggest that inoculation experiments of single microbial species/isolates can result in the overestimation or underestimation of microbial functions in multi-species contexts. Because keeping single-microbe systems in outdoor conditions is impractical, designing sets of microbes that can maximize performance of crop plants is an important step for the use of microbial functions in sustainable agriculture.


2021 ◽  
Vol 17 (2) ◽  
pp. 80-85
Author(s):  
Reginawanti Hindersah ◽  
Anny Yuniarti ◽  
Hidiyah Ayu Ratna Ma’rufah

Nitrogen-fixing Azotobacter synthesizes exopolysaccharide, which is important among other to improve aggregate stability and hence nutrients uptake. A pot experiment has been conducted to determine the effect of exopolysaccharide-producing Azotobacter and organic matter on nitrogen, phosphor, and potassium uptake by the shoot of sorghum (Sorghum bicolor (L.) Moench), and plant growth. The pot experiment was setup in randomized block design which test eight combination treatments of Azotobacter isolates (AS5, AS6, and AS5 + AS6) and organic matter application (with and without 20 t ha-1 of cow manure). The result showed dual inoculation of Azotobacter AS5 and AS6 inoculation combined with cow manure application increased N and P uptake. The dual inoculation treatment did not affect root length; but increased the shoot height and dry weight when accompanied by the application of cow manure. The ratio of root and shoot dry weight was not influenced by single or dual Azotobacter inoculation with or without organic matter.


Sign in / Sign up

Export Citation Format

Share Document