A genetic algorithm based framework for local search algorithms for distributed constraint optimization problems

2020 ◽  
Vol 34 (2) ◽  
Author(s):  
Ziyu Chen ◽  
Lizhen Liu ◽  
Jingyuan He ◽  
Zhepeng Yu
2013 ◽  
Vol 47 ◽  
pp. 613-647 ◽  
Author(s):  
T. Grinshpoun ◽  
A. Grubshtein ◽  
R. Zivan ◽  
A. Netzer ◽  
A. Meisels

Distributed Constraint Optimization (DCOP) is a powerful framework for representing and solving distributed combinatorial problems, where the variables of the problem are owned by different agents. Many multi-agent problems include constraints that produce different gains (or costs) for the participating agents. Asymmetric gains of constrained agents cannot be naturally represented by the standard DCOP model. The present paper proposes a general framework for Asymmetric DCOPs (ADCOPs). In ADCOPs different agents may have different valuations for constraints that they are involved in. The new framework bridges the gap between multi-agent problems which tend to have asymmetric structure and the standard symmetric DCOP model. The benefits of the proposed model over previous attempts to generalize the DCOP model are discussed and evaluated. Innovative algorithms that apply to the special properties of the proposed ADCOP model are presented in detail. These include complete algorithms that have a substantial advantage in terms of runtime and network load over existing algorithms (for standard DCOPs) which use alternative representations. Moreover, standard incomplete algorithms (i.e., local search algorithms) are inapplicable to the existing DCOP representations of asymmetric constraints and when they are applied to the new ADCOP framework they often fail to converge to a local optimum and yield poor results. The local search algorithms proposed in the present paper converge to high quality solutions. The experimental evidence that is presented reveals that the proposed local search algorithms for ADCOPs achieve high quality solutions while preserving a high level of privacy.


2020 ◽  
Vol 34 (05) ◽  
pp. 7333-7340
Author(s):  
Roie Zivan ◽  
Omer Lev ◽  
Rotem Galiki

Belief propagation, an algorithm for solving problems represented by graphical models, has long been known to converge to the optimal solution when the graph is a tree. When the graph representing the problem includes a single cycle, the algorithm either converges to the optimal solution or performs periodic oscillations. While the conditions that trigger these two behaviors have been established, the question regarding the convergence and divergence of the algorithm on graphs that include more than one cycle is still open.Focusing on Max-sum, the version of belief propagation for solving distributed constraint optimization problems (DCOPs), we extend the theory on the behavior of belief propagation in general – and Max-sum specifically – when solving problems represented by graphs with multiple cycles. This includes: 1) Generalizing the results obtained for graphs with a single cycle to graphs with multiple cycles, by using backtrack cost trees (BCT). 2) Proving that when the algorithm is applied to adjacent symmetric cycles, the use of a large enough damping factor guarantees convergence to the optimal solution.


Author(s):  
Tiep Le ◽  
Tran Cao Son ◽  
Enrico Pontelli

This paper proposes Multi-context System for Optimization Problems (MCS-OP) by introducing conditional costassignment bridge rules to Multi-context Systems (MCS). This novel feature facilitates the definition of a preorder among equilibria, based on the total incurred cost of applied bridge rules. As an application of MCS-OP, the paper describes how MCS-OP can be used in modeling Distributed Constraint Optimization Problems (DCOP), a prominent class of distributed optimization problems that is frequently employed in multi-agent system (MAS) research. The paper shows, by means of an example, that MCS-OP is more expressive than DCOP, and hence, could potentially be useful in modeling distributed optimization problems which cannot be easily dealt with using DCOPs. It also contains a complexity analysis of MCS-OP.


2020 ◽  
Vol 34 (05) ◽  
pp. 7111-7118
Author(s):  
Moumita Choudhury ◽  
Saaduddin Mahmud ◽  
Md. Mosaddek Khan

Distributed Constraint Optimization Problems (DCOPs) are a widely studied constraint handling framework. The objective of a DCOP algorithm is to optimize a global objective function that can be described as the aggregation of several distributed constraint cost functions. In a DCOP, each of these functions is defined by a set of discrete variables. However, in many applications, such as target tracking or sleep scheduling in sensor networks, continuous valued variables are more suited than the discrete ones. Considering this, Functional DCOPs (F-DCOPs) have been proposed that can explicitly model a problem containing continuous variables. Nevertheless, state-of-the-art F-DCOPs approaches experience onerous memory or computation overhead. To address this issue, we propose a new F-DCOP algorithm, namely Particle Swarm based F-DCOP (PFD), which is inspired by a meta-heuristic, Particle Swarm Optimization (PSO). Although it has been successfully applied to many continuous optimization problems, the potential of PSO has not been utilized in F-DCOPs. To be exact, PFD devises a distributed method of solution construction while significantly reducing the computation and memory requirements. Moreover, we theoretically prove that PFD is an anytime algorithm. Finally, our empirical results indicate that PFD outperforms the state-of-the-art approaches in terms of solution quality and computation overhead.


2018 ◽  
Vol 210 ◽  
pp. 04052 ◽  
Author(s):  
Nadia Abd-Alsabour

Local search algorithms perform an important role when being employed with optimization algorithms tackling numerous optimization problems since they lead to getting better solutions. However, this is not practical in many applications as they do not contribute to the search process. This was not much studied previously for traditional optimization algorithms or for parallel optimization algorithms. This paper investigates this issue for parallel optimization algorithms when tackling high dimensional subset problems. The acquired results show impressive recommendations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Noureddine Bouhmala

The simplicity of the maximum satisfiability problem (MAX-SAT) combined with its applicability in many areas of artificial intelligence and computing science made it one of the fundamental optimization problems. This NP-complete problem refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weights of satisfied clauses) in a Boolean formula. The Walksat algorithm is considered to be the main skeleton underlying almost all local search algorithms for MAX-SAT. Most local search algorithms including Walksat rely on the 1-flip neighborhood structure. This paper introduces a variable neighborhood walksat-based algorithm. The neighborhood structure can be combined easily using any local search algorithm. Its effectiveness is compared with existing algorithms using 1-flip neighborhood structure and solvers such as CCLS and Optimax from the eighth MAX-SAT evaluation.


Sign in / Sign up

Export Citation Format

Share Document