scholarly journals Measuring associational thinking through word embeddings

Author(s):  
Carlos Periñán-Pascual

AbstractThe development of a model to quantify semantic similarity and relatedness between words has been the major focus of many studies in various fields, e.g. psychology, linguistics, and natural language processing. Unlike the measures proposed by most previous research, this article is aimed at estimating automatically the strength of associative words that can be semantically related or not. We demonstrate that the performance of the model depends not only on the combination of independently constructed word embeddings (namely, corpus- and network-based embeddings) but also on the way these word vectors interact. The research concludes that the weighted average of the cosine-similarity coefficients derived from independent word embeddings in a double vector space tends to yield high correlations with human judgements. Moreover, we demonstrate that evaluating word associations through a measure that relies on not only the rank ordering of word pairs but also the strength of associations can reveal some findings that go unnoticed by traditional measures such as Spearman’s and Pearson’s correlation coefficients.

Author(s):  
Tianyuan Zhou ◽  
João Sedoc ◽  
Jordan Rodu

Many tasks in natural language processing require the alignment of word embeddings. Embedding alignment relies on the geometric properties of the manifold of word vectors. This paper focuses on supervised linear alignment and studies the relationship between the shape of the target embedding. We assess the performance of aligned word vectors on semantic similarity tasks and find that the isotropy of the target embedding is critical to the alignment. Furthermore, aligning with an isotropic noise can deliver satisfactory results. We provide a theoretical framework and guarantees which aid in the understanding of empirical results.


Digital ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 145-161
Author(s):  
Kowshik Bhowmik ◽  
Anca Ralescu

This article presents a systematic literature review on quantifying the proximity between independently trained monolingual word embedding spaces. A search was carried out in the broader context of inducing bilingual lexicons from cross-lingual word embeddings, especially for low-resource languages. The returned articles were then classified. Cross-lingual word embeddings have drawn the attention of researchers in the field of natural language processing (NLP). Although existing methods have yielded satisfactory results for resource-rich languages and languages related to them, some researchers have pointed out that the same is not true for low-resource and distant languages. In this paper, we report the research on methods proposed to provide better representation for low-resource and distant languages in the cross-lingual word embedding space.


Author(s):  
Nora Mohammed

Extracting synonyms from textual corpora using computational techniques is an interesting research problem in the Natural Language Processing (NLP) domain. Neural techniques (such as Word2Vec) have been recently utilized to produce distributional word representations (also known as word embeddings) that capture semantic similarity/relatedness between words based on linear context. Nevertheless, using these techniques for synonyms extraction poses many challenges due to the fact that similarity between vector word representations does not indicate only synonymy between words, but also other sense relations as well as word association or relatedness. In this paper, we tackle this problem using a novel 2-step approach. We first build distributional word embeddings using Word2Vec then use the induced word embeddings as an input to train a feed-forward neutral network using annotated dataset to distinguish between synonyms and other semantically related words


2020 ◽  
Vol 44 (2) ◽  
pp. 231-246
Author(s):  
Karlo Babić ◽  
Francesco Guerra ◽  
Sanda Martinčić-Ipšić ◽  
Ana Meštrović

Measuring the semantic similarity of texts has a vital role in various tasks from the field of natural language processing. In this paper, we describe a set of experiments we carried out to evaluate and compare the performance of different approaches for measuring the semantic similarity of short texts. We perform a comparison of four models based on word embeddings: two variants of Word2Vec (one based on Word2Vec trained on a specific dataset and the second extending it with embeddings of word senses), FastText, and TF-IDF. Since these models provide word vectors, we experiment with various methods that calculate the semantic similarity of short texts based on word vectors. More precisely, for each of these models, we test five methods for aggregating word embeddings into text embedding. We introduced three methods by making variations of two commonly used similarity measures. One method is an extension of the cosine similarity based on centroids, and the other two methods are variations of the Okapi BM25 function. We evaluate all approaches on the two publicly available datasets: SICK and Lee in terms of the Pearson and Spearman correlation. The results indicate that extended methods perform better from the original in most of the cases.


AERA Open ◽  
2021 ◽  
Vol 7 ◽  
pp. 233285842110286
Author(s):  
Kylie L. Anglin ◽  
Vivian C. Wong ◽  
Arielle Boguslav

Though there is widespread recognition of the importance of implementation research, evaluators often face intense logistical, budgetary, and methodological challenges in their efforts to assess intervention implementation in the field. This article proposes a set of natural language processing techniques called semantic similarity as an innovative and scalable method of measuring implementation constructs. Semantic similarity methods are an automated approach to quantifying the similarity between texts. By applying semantic similarity to transcripts of intervention sessions, researchers can use the method to determine whether an intervention was delivered with adherence to a structured protocol, and the extent to which an intervention was replicated with consistency across sessions, sites, and studies. This article provides an overview of semantic similarity methods, describes their application within the context of educational evaluations, and provides a proof of concept using an experimental study of the impact of a standardized teacher coaching intervention.


Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.


2010 ◽  
Vol 16 (4) ◽  
pp. 417-437 ◽  
Author(s):  
TIM VAN DE CRUYS

AbstractThe distributional similarity methods have proven to be a valuable tool for the induction of semantic similarity. Until now, most algorithms use two-way co-occurrence data to compute the meaning of words. Co-occurrence frequencies, however, need not be pairwise. One can easily imagine situations where it is desirable to investigate co-occurrence frequencies of three modes and beyond. This paper will investigate tensor factorization methods to build a model of three-way co-occurrences. The approach is applied to the problem of selectional preference induction, and automatically evaluated in a pseudo-disambiguation task. The results show that tensor factorization, and non-negative tensor factorization in particular, is a promising tool for Natural Language Processing (nlp).


2020 ◽  
Author(s):  
Masashi Sugiyama

Recently, word embeddings have been used in many natural language processing problems successfully and how to train a robust and accurate word embedding system efficiently is a popular research area. Since many, if not all, words have more than one sense, it is necessary to learn vectors for all senses of word separately. Therefore, in this project, we have explored two multi-sense word embedding models, including Multi-Sense Skip-gram (MSSG) model and Non-parametric Multi-sense Skip Gram model (NP-MSSG). Furthermore, we propose an extension of the Multi-Sense Skip-gram model called Incremental Multi-Sense Skip-gram (IMSSG) model which could learn the vectors of all senses per word incrementally. We evaluate all the systems on word similarity task and show that IMSSG is better than the other models.


2020 ◽  
Author(s):  
Mark Ormerod ◽  
Jesús Martínez del Rincón ◽  
Barry Devereux

BACKGROUND Semantic textual similarity (STS) is a natural language processing (NLP) task that involves assigning a similarity score to 2 snippets of text based on their meaning. This task is particularly difficult in the domain of clinical text, which often features specialized language and the frequent use of abbreviations. OBJECTIVE We created an NLP system to predict similarity scores for sentence pairs as part of the Clinical Semantic Textual Similarity track in the 2019 n2c2/OHNLP Shared Task on Challenges in Natural Language Processing for Clinical Data. We subsequently sought to analyze the intermediary token vectors extracted from our models while processing a pair of clinical sentences to identify where and how representations of semantic similarity are built in transformer models. METHODS Given a clinical sentence pair, we take the average predicted similarity score across several independently fine-tuned transformers. In our model analysis we investigated the relationship between the final model’s loss and surface features of the sentence pairs and assessed the decodability and representational similarity of the token vectors generated by each model. RESULTS Our model achieved a correlation of 0.87 with the ground-truth similarity score, reaching 6th place out of 33 teams (with a first-place score of 0.90). In detailed qualitative and quantitative analyses of the model’s loss, we identified the system’s failure to correctly model semantic similarity when both sentence pairs contain details of medical prescriptions, as well as its general tendency to overpredict semantic similarity given significant token overlap. The token vector analysis revealed divergent representational strategies for predicting textual similarity between bidirectional encoder representations from transformers (BERT)–style models and XLNet. We also found that a large amount information relevant to predicting STS can be captured using a combination of a classification token and the cosine distance between sentence-pair representations in the first layer of a transformer model that did not produce the best predictions on the test set. CONCLUSIONS We designed and trained a system that uses state-of-the-art NLP models to achieve very competitive results on a new clinical STS data set. As our approach uses no hand-crafted rules, it serves as a strong deep learning baseline for this task. Our key contribution is a detailed analysis of the model’s outputs and an investigation of the heuristic biases learned by transformer models. We suggest future improvements based on these findings. In our representational analysis we explore how different transformer models converge or diverge in their representation of semantic signals as the tokens of the sentences are augmented by successive layers. This analysis sheds light on how these “black box” models integrate semantic similarity information in intermediate layers, and points to new research directions in model distillation and sentence embedding extraction for applications in clinical NLP.


Sign in / Sign up

Export Citation Format

Share Document