W-Band power amplifier with high output power and power-added efficiency in 90 nm CMOS

2019 ◽  
Vol 100 (1) ◽  
pp. 31-46
Author(s):  
Yo-Sheng Lin ◽  
Kai-Siang Lan
Author(s):  
Ahmed S. H. Ahmed ◽  
Utku Soylu ◽  
Munkyo Seo ◽  
Miguel Urteaga ◽  
Mark J. W. Rodwell

2021 ◽  
Vol 19 ◽  
pp. 28-37
Author(s):  
Muhammad Noaman Zahid ◽  
Jianliang Jiang ◽  
Heng Lu ◽  
Hengli Zhang

In Radio Frequency (RF) communication, a Power Amplifier (PA) is used to amplify the signal at the required power level with less utilization of Direct Current (DC) power. The main characteristic of class-E PA is sturdy nonlinearity due to the switching mode action. In this study, a modified design of class-E PA with balanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and high output power for Electronic Article Surveillance (EAS) Radio Frequency Identification (RFID) application is presented. MOSFETs are adjusted to have high output performance of about 80% for RFID-based EAS system. A matching network is also proposed for accurate matching because there are differences in the behavior between RF waves and low frequency waves. The design of a matching network is a tradeoff among the complexity, adjustability, implementation, and bandwidth for the required output power and frequency. The implemented PA is capable of providing 44.8 dBm output power with Power-Added Efficiency (PAE) of 78.5% at 7.7 MHz to 8.7 MHz.


2021 ◽  
Vol 11 (19) ◽  
pp. 9017
Author(s):  
Jinho Jeong ◽  
Yeongmin Jang ◽  
Jongyoun Kim ◽  
Sosu Kim ◽  
Wansik Kim

In this paper, a high-power amplifier integrated circuit (IC) in gallium-nitride (GaN) on silicon (Si) technology is presented at a W-band (75–110 GHz). In order to mitigate the losses caused by relatively high loss tangent of Si substrate compared to silicon carbide (SiC), low-impedance microstrip lines (20–30 Ω) are adopted in the impedance matching networks. They allow for the impedance transformation between 50 Ω and very low impedances of the wide-gate transistors used for high power generation. Each stage is matched to produce enough power to drive the next stage. A Lange coupler is employed to combine two three-stage common source amplifiers, providing high output power and good input/output return loss. The designed power amplifier IC was fabricated in the commercially available 60 nm GaN-on-Si high electron mobility transistor (HEMT) foundry. From on-wafer probe measurements, it exhibits the output power higher than 26.5 dBm and power added efficiency (PAE) higher than 8.5% from 88 to 93 GHz with a large-signal gain > 10.5 dB. Peak output power is measured to be 28.9 dBm with a PAE of 13.3% and a gain of 9.9 dB at 90 GHz, which corresponds to the power density of 1.94 W/mm. To the best of the authors’ knowledge, this result belongs to the highest output power and power density among the reported power amplifier ICs in GaN-on-Si HEMT technologies operating at the W-band.


2015 ◽  
Vol 43 (7) ◽  
pp. 2132-2139 ◽  
Author(s):  
Cunjun Ruan ◽  
Muwu Zhang ◽  
Jun Dai ◽  
Changqing Zhang ◽  
Shuzhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document