Complex dynamics of a novel 3D autonomous system without linear terms having line of equilibria: coexisting bifurcations and circuit design

2020 ◽  
Vol 103 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Rudolphe Wafo Tapche ◽  
Zeric Tabekoueng Njitacke ◽  
Jacques Kengne ◽  
François Beceau Pelap
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abir Lassoued ◽  
Olfa Boubaker

A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.


2019 ◽  
Vol 8 (1) ◽  
pp. 70-90 ◽  
Author(s):  
Brice Anicet Mezatio ◽  
Marceline Motchongom Tingue ◽  
Romanic Kengne ◽  
Aurelle Tchagna Kouanou ◽  
Theophile Fozin Fonzin ◽  
...  

Author(s):  
Aceng Sambas ◽  
Mustafa Mamat ◽  
Ayman Ali Arafa ◽  
Gamal M Mahmoud ◽  
Mohamad Afendee Mohamed ◽  
...  

<p>A new chaotic system with line equilibrium is introduced in this paper. This system consists of five terms with two transcendental nonlinearities and two quadratic nonlinearities. Various tools of dynamical system such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagram and Poincarè map are used. It is interesting that this system has a line of fixed points and can display chaotic attractors. Next, this paper discusses control using passive control method. One example is given to insure the theoretical analysis. Finally, for the  new chaotic system, An electronic circuit for realizing the chaotic system has been implemented. The numerical simulation by using MATLAB 2010 and implementation of circuit simulations by using MultiSIM 10.0 have been performed in this study.</p>


2021 ◽  
Author(s):  
mengjiao wang ◽  
Jianhui Li ◽  
Xinan Zhang ◽  
Herbert Ho-Ching Iu ◽  
Tyrone Fernando ◽  
...  

Abstract In this paper, multi-timescale dynamics and the formation mechanism of a 3D non-autonomous system with two slowly varying periodic excitations are systematically investigated. Interestingly, the system shows novel multibifurcation cascaded bursting oscillations (MBCBOs) when the frequency of the two excitations is much lower than the mean frequency of the original system (MFOS). For instance, periodic, quasi-periodic and chaotic bursting oscillations induced by a variety of cascaded bifurcations are first observed, and the phenomenon of spiking transfer is also revealed. Besides, stability and local bifurcations of the system are comprehensively investigated to analyze the mechanism of the observed MBCBOs, in which bifurcation diagram, Lyapunov exponents, time series, phase portraits, and transformed phase diagrams are used. Finally, through a circuit simulation and hardware experiment, these complex dynamics phenomena are verified physically.


2017 ◽  
Vol 27 (04) ◽  
pp. 1850066 ◽  
Author(s):  
Viet-Thanh Pham ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Tomasz Kapitaniak

Chaotic systems with a curve of equilibria have attracted considerable interest in theoretical researches and engineering applications because they are categorized as systems with hidden attractors. In this paper, we introduce a new three-dimensional autonomous system with cubic equilibrium. Fundamental dynamical properties and complex dynamics of the system have been investigated. Of particular interest is the coexistence of chaotic attractors in the proposed system. Furthermore, we have designed and implemented an electronic circuit to verify the feasibility of such a system with cubic equilibrium.


2008 ◽  
Vol 18 (05) ◽  
pp. 1393-1414 ◽  
Author(s):  
QIGUI YANG ◽  
GUANRONG CHEN

This paper reports the finding of a chaotic system with one saddle and two stable node-foci in a simple three-dimensional (3D) autonomous system. The system connects the original Lorenz system and the original Chen system and represents a transition from one to the other. The algebraical form of the chaotic attractor is very similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact that the chaotic system has a chaotic attractor, one saddle and two stable node-foci. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Huitao Zhao ◽  
Yiping Lin ◽  
Yunxian Dai

Based on Sprott N system, a new three-dimensional autonomous system is reported. It is demonstrated to be chaotic in the sense of having positive largest Lyapunov exponent and fractional dimension. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcation diagram, Poincaré mapping, and period-doubling route to chaos are analyzed with careful numerical simulations. The obtained results also show that the period-doubling sequence of bifurcations leads to a Feigenbaum-like strange attractor.


Sign in / Sign up

Export Citation Format

Share Document