A CHAOTIC SYSTEM WITH ONE SADDLE AND TWO STABLE NODE-FOCI

2008 ◽  
Vol 18 (05) ◽  
pp. 1393-1414 ◽  
Author(s):  
QIGUI YANG ◽  
GUANRONG CHEN

This paper reports the finding of a chaotic system with one saddle and two stable node-foci in a simple three-dimensional (3D) autonomous system. The system connects the original Lorenz system and the original Chen system and represents a transition from one to the other. The algebraical form of the chaotic attractor is very similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact that the chaotic system has a chaotic attractor, one saddle and two stable node-foci. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations.

2004 ◽  
Vol 14 (05) ◽  
pp. 1507-1537 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG

This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.


2010 ◽  
Vol 20 (04) ◽  
pp. 1061-1083 ◽  
Author(s):  
QIGUI YANG ◽  
ZHOUCHAO WEI ◽  
GUANRONG CHEN

This paper reports the finding of an unusual three-dimensional autonomous quadratic Lorenz-like chaotic system which, surprisingly, has two stable node-type of foci as its only equilibria. The new system contains the diffusionless Lorenz system and the Burke–Shaw system, and some others, as special cases. The algebraic form of the new chaotic system is similar to the other Lorenz-type systems, but they are topologically nonequivalent. To further analyze the new system, some dynamical behaviors such as Hopf bifurcation and singularly degenerate heteroclinic and homoclinic orbits, are rigorously proved with simulation verification. Moreover, it is proved that the new system with some specified parameter values has Silnikov-type homoclinic and heteroclinic chaos.


2009 ◽  
Vol 19 (11) ◽  
pp. 3841-3853 ◽  
Author(s):  
ZENGHUI WANG ◽  
GUOYUAN QI ◽  
YANXIA SUN ◽  
MICHAËL ANTONIE VAN WYK ◽  
BAREND JACOBUS VAN WYK

In this paper, several three-dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have similar features. A simpler and generalized 3-D continuous autonomous system is proposed based on these features which can be extended to existing 3-D four-wing chaotic systems by adding some linear and/or quadratic terms. The new system can generate a four-wing chaotic attractor with simple topological structures. Some basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincaré maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.


2019 ◽  
Vol 29 (05) ◽  
pp. 1950060 ◽  
Author(s):  
Qigui Yang ◽  
Xinmei Qiao

In the chaotic polynomial Lorenz-type systems (including Lorenz, Chen, Lü and Yang systems) and Rössler system, their equilibria are unstable and the number of the hyperbolic equilibria are no more than three. This paper shows how to construct a simple analytic (nonpolynomial) chaotic system that can have any preassigned number of equilibria. A special 3D chaotic system with no equilibrium is first presented and discussed. Using a methodology of adding a constant controller to the third equation of such a chaotic system, it is shown that a chaotic system with any preassigned number of equilibria can be generated. Two complete mathematical characterizations for the number and stability of their equilibria are further rigorously derived and studied. This system is very interesting in the sense that some complex dynamics are found, revealing many amazing properties: (i) a hidden chaotic attractor exists with no equilibria or only one stable equilibrium; (ii) the chaotic attractor coexists with unstable equilibria, including two/five unstable equilibria; (iii) the chaotic attractor coexists with stable equilibria and unstable equilibria, including one stable and two unstable equilibria/94 stable and 93 unstable equilibria; (iv) the chaotic attractor coexists with infinitely many nonhyperbolic isolated equilibria. These results reveal an intrinsic relationship of the global dynamical behaviors with the number and stability of the equilibria of some unusual chaotic systems.


2017 ◽  
Vol 27 (04) ◽  
pp. 1850066 ◽  
Author(s):  
Viet-Thanh Pham ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Tomasz Kapitaniak

Chaotic systems with a curve of equilibria have attracted considerable interest in theoretical researches and engineering applications because they are categorized as systems with hidden attractors. In this paper, we introduce a new three-dimensional autonomous system with cubic equilibrium. Fundamental dynamical properties and complex dynamics of the system have been investigated. Of particular interest is the coexistence of chaotic attractors in the proposed system. Furthermore, we have designed and implemented an electronic circuit to verify the feasibility of such a system with cubic equilibrium.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1115 ◽  
Author(s):  
Shengqiu Dai ◽  
Kehui Sun ◽  
Shaobo He ◽  
Wei Ai

Based on simplified Lorenz multiwing and Chua multiscroll chaotic systems, a rotation compound chaotic system is presented via transformation. Based on a binary fractal algorithm, a new ternary fractal algorithm is proposed. In the ternary fractal algorithm, the number of input sequences is extended from 2 to 3, which means the chaotic attractor with fractal transformation can be presented in the three-dimensional space. Taking Lorenz system, rotation Lorenz system and compound chaotic system as the seed chaotic systems, the dynamics of the complex chaotic attractors with fractal transformation are analyzed by means of bifurcation diagram, complexity and power spectrum, and the results show that the chaotic sequences with fractal transformation have higher complexity. As the experimental verification, one kind of complex chaotic attractors is implemented by DSP, and the result is consistent with that of the simulation, which verifies the feasibility of digital circuit implement.


2013 ◽  
Vol 23 (04) ◽  
pp. 1330011 ◽  
Author(s):  
XIONG WANG ◽  
GUANRONG CHEN

In this article, three-dimensional autonomous chaotic systems with two quadratic terms, similar to the Lorenz system in their algebraic forms, are studied. An attractor with two clearly distinguishable scrolls similar to the Lorenz attractor is referred to as a Lorenz-like attractor, while an attractor with more intertwine between the two scrolls similar to the Chen attractor is referred to as a Chen-like attractor. A gallery of Lorenz-like attractors and Chen-like attractors are presented. For several different families of such systems, through tuning only one real parameter gradually, each of them can generate a spectrum of chaotic attractors continuously changing from a Lorenz-like attractor to a Chen-like attractor. Some intrinsic relationships between the Lorenz system and the Chen system are revealed and discussed. Some common patterns of the Lorenz-like and Chen-like attractors are found and analyzed, which suggest that the instability of the two saddle-foci of such a system somehow determines the shape of its chaotic attractor. These interesting observations on the general dynamic patterns hopefully could shed some light for a better understanding of the intrinsic relationships between the algebraic structures and the geometric attractors of these kinds of chaotic systems.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Chunsheng Feng ◽  
Qiujian Huang ◽  
Yongjian Liu

Little seems to be known about the study of the chaotic system with only Lyapunov stable equilibria from the perspective of differential geometry. Therefore, this paper presents Jacobi analysis of an unusual three-dimensional (3D) autonomous chaotic system. Under certain parameter conditions, this system has positive Lyapunov exponents and only two linear stable equilibrium points, which means that chaotic attractor and Lyapunov stable equilibria coexist. The dynamical behavior of the deviation vector near the whole trajectories (including all equilibrium points) is analyzed in detail. The results show that the value of the deviation curvature tensor at equilibrium points is only related to parameters; the two equilibrium points of the system are Jacobi stable if the parameters satisfy certain conditions. Particularly, for a specific set of parameters, the linear stable equilibrium points of the system are always Jacobi unstable. A periodic orbit that is Lyapunov stable is also proven to be always Jacobi unstable. Next, Jacobi-stable regions of the Lorenz system, the Chen system and the system under study are compared for specific parameters. It can be found that although these three chaotic systems are very similar, their regions of Jacobi stable parameters are much different. Finally, by comparing Jacobi stability with Lyapunov stability, the obtained results demonstrate that the Jacobi stable parameter region is basically symmetric with the Lyapunov stable parameter region.


2019 ◽  
Vol 29 (07) ◽  
pp. 1950092 ◽  
Author(s):  
Qigui Yang ◽  
Lingbing Yang ◽  
Bin Ou

This paper reports some hidden hyperchaotic attractors and complex dynamics in a new five-dimensional (5D) system with only two nonlinear terms. The system is generated by adding two linear controllers to an unusual 3D autonomous quadratic chaotic system with two stable node-foci. In particular, the hyperchaotic system without equilibrium or with only one stable equilibrium can generate two kinds of hidden hyperchaotic attractors with three positive Lyapunov exponents. Numerical methods not only verify the existence of such attractors and hyperchaotic attractors, but also show the dynamical evolution of this system. The 5D system has self-excited attractors and two types of hidden attractors with the change of its parameter. The parameter switching algorithm is further utilized to numerically approximate the attractor. Specifically, the hidden hyperchaotic attractor can be approximated by switching between two self-excited chaotic attractors. Finally, the circuit realization results are consistent with the numerical results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Fuchen Zhang

In this paper, we investigate the ultimate bound set and positively invariant set of a 3D Lorenz-like chaotic system, which is different from the well-known Lorenz system, Rössler system, Chen system, Lü system, and even Lorenz system family. Furthermore, we investigate the global exponential attractive set of this system via the Lyapunov function method. The rate of the trajectories going from the exterior of the globally exponential attractive set to the interior of the globally exponential attractive set is also obtained for all the positive parameters values a,b,c. The innovation of this paper is that our approach to construct the ultimate bounded and globally exponential attractivity sets assumes that the corresponding sets depend on some artificial parameters (λ and m); that is, for the fixed parameters of the system, we have a series of sets depending on λ and m. The results contain the known result as a special case for the fixed λ and m. The efficiency of the scheme is shown numerically. The theoretical results may find wide applications in chaos control and chaos synchronization.


Sign in / Sign up

Export Citation Format

Share Document