Chaos, bifurcation, coexisting attractors and circuit design of a three-dimensional continuous autonomous system

Optik ◽  
2016 ◽  
Vol 127 (13) ◽  
pp. 5400-5406 ◽  
Author(s):  
Qiang Lai ◽  
Long Wang
2005 ◽  
Vol 18 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Anas Al-Rabadi

Fundamentals of regular three-dimensional (3D) lattice circuits are introduced. Lattice circuits represent an important class of regular circuits that allow for local interconnections, predictable timing, fault localization, and self-repair. In addition, three-dimensional lattice circuits can be potentially well suited for future 3D technologies, such as nanotechnologies, where the intrinsic physical delay of the irregular and lengthy interconnections limits the device performance. Although the current technology does not offer a menu for the immediate physical implementation of the proposed three-dimensional circuits, this paper deals with three-dimensional logic circuit design from a fundamental and foundational level for a rather new possible future directions in designing digital logic circuits.


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 215-219
Author(s):  
Akhendra Kumar Padavala ◽  
Narayana Kiran Akondi ◽  
Bheema Rao Nistala

Purpose This paper aims to present an efficient method to improve quality factor of printed fractal inductors based on electromagnetic band-gap (EBG) surface. Design/methodology/approach Hilbert fractal inductor is designed and simulated using high-frequency structural simulator. To improve the quality factor, an EBG surface underneath the inductor is incorporated without any degradation in inductance value. Findings The proposed inductor and Q factor are measured based on well-known three-dimensional simulator, and the results are compared experimentally. Practical implications The proposed method was able to significantly decrease the noise with increase in the speed of radio frequency and sensor-integrated circuit design. Originality/value Fractal inductor is designed and simulated with and without EBG surfaces. The measurement of printed circuit board prototypes demonstrates that the inclusion of split-ring array as EBG surface increases the quality factor by 90 per cent over standard fractal inductor of the same dimensions with a small degradation in inductance value and is capable of operating up to 2.4 GHz frequency range.


2010 ◽  
Vol 19 (7) ◽  
pp. 070514
Author(s):  
Dong Gao-Gao ◽  
Zheng Song ◽  
Tian Li-Xin ◽  
Du Rui-Jin ◽  
Sun Mei

2019 ◽  
Vol 29 (12) ◽  
pp. 1950166 ◽  
Author(s):  
Ting Yang ◽  
Qigui Yang

Intuitively, a finite-dimensional autonomous system of ordinary differential equations can only generate finitely many chaotic attractors. Amazingly, however, this paper finds a three-dimensional autonomous dynamical system that can generate infinitely many chaotic attractors. Specifically, this system can generate infinitely many coexisting chaotic attractors and infinitely many coexisting periodic attractors in the following three cases: (i) no equilibria, (ii) only infinitely many nonhyperbolic double-zero equilibria, and (iii) both infinitely many hyperbolic saddles and nonhyperbolic pure-imaginary equilibria. By analyzing the stability of double-zero and pure-imaginary equilibria, it is shown that the classic Shil’nikov criteria fail in verifying the existence of chaos in the above three cases.


2019 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Gambo Betchewe ◽  
Mohamadou Alidou ◽  
Sundarapandian Vaidyanathan ◽  
Oumate Alhadji Abba

2014 ◽  
Vol 602-605 ◽  
pp. 2684-2687
Author(s):  
Yu Zhang ◽  
Chong Lou Tong ◽  
Teng Fei Lei

A new class of three-dimensional chaotic system is constructed by algebraic methods, which has a similar structure with the classic Lorenz system but contains the square term. The equilibrium point of the system stability is analyzed, and the numerical simulation is carried on the bifurcation diagram and Lyapunov exponent. The chaotic circuit of these systems is designed by using the software of EWB. The results of the experimental simulation verify the existence of the chaotic attractor, which provides theoretical reference to the application of such system.


2017 ◽  
Vol 27 (07) ◽  
pp. 1750100 ◽  
Author(s):  
J. Kengne ◽  
A. Nguomkam Negou ◽  
Z. T. Njitacke

We perform a systematic analysis of a system consisting of a novel jerk circuit obtained by replacing the single semiconductor diode of the original jerk circuit described in [Sprott, 2011a] with a pair of semiconductor diodes connected in antiparallel. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a control system with nonlinear velocity feedback. The stability of the (unique) fixed point, the local bifurcations, and the discrete symmetries of the model equations are discussed. The complex behavior of the system is categorized in terms of its parameters by using bifurcation diagrams, Lyapunov exponents, time series, Poincaré sections, and basins of attraction. Antimonotonicity, period doubling bifurcation, symmetry restoring crises, chaos, and coexisting bifurcations are reported. More interestingly, one of the key contributions of this work is the finding of various regions in the parameters’ space in which the proposed (“elegant”) jerk circuit experiences the unusual phenomenon of multiple competing attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). The basins of attraction of various coexisting attractors display complexity (i.e. fractal basins boundaries), thus suggesting possible jumps between coexisting attractors in experiment. Results of theoretical analyses are perfectly traced by laboratory experimental measurements. To the best of the authors’ knowledge, the jerk circuit/system introduced in this work represents the simplest electrical circuit (only a quadruple op amplifier chip without any analog multiplier chip) reported to date capable of four disconnected periodic and chaotic attractors for the same parameters setting.


Sign in / Sign up

Export Citation Format

Share Document