Continuous Sums of Ridge Functions on a Convex Body with Dini Condition on Moduli of Continuity at Boundary Points

2018 ◽  
Vol 45 (2) ◽  
pp. 335-345
Author(s):  
A. A. Kuleshov
2017 ◽  
Vol 102 (5-6) ◽  
pp. 799-805 ◽  
Author(s):  
A. A. Kuleshov
Keyword(s):  

Author(s):  
Xuan Thinh Duong ◽  
Ji Li ◽  
Dongyong Yang

Let [Formula: see text], [Formula: see text] and [Formula: see text] be a matrix [Formula: see text] weight. In this paper, we introduce a version of variation [Formula: see text] for matrix Calderón–Zygmund operators with modulus of continuity satisfying the Dini condition. We then obtain the [Formula: see text]-boundedness of [Formula: see text] with norm [Formula: see text] by first proving a sparse domination of the variation of the scalar Calderón–Zygmund operator, and then providing a convex body sparse domination of the variation of the matrix Calderón–Zygmund operator. The key step here is a weak type estimate of a local grand maximal truncated operator with respect to the scalar Calderón–Zygmund operator.


1998 ◽  
Vol 94 (5) ◽  
pp. 809-814 ◽  
Author(s):  
C. BARRIO ◽  
J.R. SOLANA

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


1999 ◽  
Vol 6 (4) ◽  
pp. 307-322
Author(s):  
L. Gogoladze

Abstract Inequalities are derived which enable one to estimate integral moduli of continuity of functions of several variables in terms of Fourier coefficients.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.


Author(s):  
Ansgar Freyer ◽  
Martin Henk

AbstractGardner et al. posed the problem to find a discrete analogue of Meyer’s inequality bounding from below the volume of a convex body by the geometric mean of the volumes of its slices with the coordinate hyperplanes. Motivated by this problem, for which we provide a first general bound, we study in a more general context the question of bounding the number of lattice points of a convex body in terms of slices, as well as projections.


Author(s):  
A. M. Macbeath

It was shown by Sas (1) that, if K is a plane convex body, then it is possible to inscribe in K a convex n-gon occupying no less a fraction of its area than the regular n-gon occupies in its circumscribing circle. It is the object of this note to establish the n-dimensional analogue of Sas's result, giving incidentally an independent proof of the plane case. The proof is a simple application of the Steiner method of symmetrization.


Sign in / Sign up

Export Citation Format

Share Document