Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy

Author(s):  
J. K. Madhukesh ◽  
G. K. Ramesh ◽  
B. C. Prasannakumara ◽  
S. A. Shehzad ◽  
F. M. Abbasi
2020 ◽  
Vol 9 (1) ◽  
pp. 223-232 ◽  
Author(s):  
B.J. Gireesha ◽  
S. Sindhu

AbstractThis study has been conducted to focus on natural convection flow of Casson fluid through an annular microchannel formed by two cylinders in the presence of magnetic field. The process of heat generation/absorption is taken into consideration. Combined effects of various parameters such as porous medium, velocity slip and temperature jump are considered. Solution of the present mathematical model is obtained numerically using fourth-fifth order Runge-Kutta-Fehlberg method. The flow velocity, thermal field, skin friction and Nusselt number are scrutinized with respect to the involved parameters of interest such as fluid wall interaction parameter, rarefaction parameter, Casson parameter and Darcy number with the aid of graphs. It is established that higher values of Casson parameter increases the skin friction coefficient. Further it is obtained that rate of heat transfer diminishes as fluid wall interaction parameter increases.


2020 ◽  
Vol 32 (11) ◽  
pp. 113602
Author(s):  
U. S. Mahabaleshwar ◽  
K. R. Nagaraju ◽  
P. N. Vinay Kumar ◽  
Martin Ndi Azese

2008 ◽  
Vol 130 (11) ◽  
Author(s):  
O. D. Makinde ◽  
P. Sibanda

The problem of steady laminar hydromagnetic heat transfer by mixed convection flow over a vertical plate embedded in a uniform porous medium in the presence of a uniform normal magnetic field is studied. Convective heat transfer through porous media has wide applications in engineering problems such as in high temperature heat exchangers and in insulation problems. We construct solutions for the free convection boundary-layer flow equations using an Adomian–Padé approximation method that in the recent past has proven to be an able alternative to the traditional numerical techniques. The effects of the various flow parameters such as the Eckert, Hartmann, and Schmidt numbers on the skin friction coefficient and the concentration, velocity, and temperature profiles are discussed and presented graphically. A comparison of our results with those obtained using traditional numerical methods in earlier studies is made, and the results show an excellent agreement. The results demonstrate the reliability and the efficiency of the Adomian–Padé method in an unbounded domain.


Sign in / Sign up

Export Citation Format

Share Document